

 Vol. 7, No. 2 | July – December 2023

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 20223

9

Towards a Trustworthy and Efficient ETL Pipeline for

ATM Transaction Data

Muhammad Ahmad Ashfaq 1, Nimra Haq 2, Usman Arshad3, Muhammad Farooq4, and

Shuja ur Rehman Baig

Abstract:

 ATMs generate vast amounts of data daily, which needs to be analyzed and stored. Dealing

with this data also termed big data, is a complex task, and here comes the role of ETL pipelines.

ETL pipelines need extensive resources for operations, and their performance optimization is

necessary as data must be dealt with in near or even real-time. If the pipeline deals with financial

data such as ATM transactions, steps should be taken to ensure the data’s security, privacy,

confidentiality, and integrity. This can be achieved using Blockchain technology. It is a

distributed ledger technology having an immutable nature. It has significant advantages in terms

of providing security, but it has disadvantages as well, such as low throughput and transactional

latency. If blockchain is used in an ETL pipeline, it will affect the overall performance. So, to

prevent the decline in performance, steps should be taken to optimize it. In this paper, we are

using parallelization and partitioning as techniques to optimize performance. The primary goal

here is to achieve maximum security while maintaining performance.

Keywords: ETL Pipeline, Big Data, Blockchain, Performance optimization, Kafka, Spark.

1. Introduction

Today, technology has digitized the
finance sector and changed how customers
interact with financial institutions and get their
services. This change can be seen in the wide
use of Automated Teller Machines(ATMs).
ATMs play a vital role in providing certain
banking services at any time with convenience
and ease. As users perform transactions using
ATMs, a considerable amount of valuable
financial data is generated. Businesses want to
use this data for their benefit as it can provide
insights into customer behaviors and
preferences when analyzed.

 This data can also be used for better-

aimed marketing, analyzing overall market

patterns, and getting more business insights.

The banking institutions can use this data to

1FCIT, Faculty of Computing and Information Technology, Shahrahe Quaid-e-Azam Allama

Iqbal Campus (Old Campus), Lahore, Pakistan

Corresponding Athor: shuja@pucit.edu.pk

take finer steps to improve customer

experience and optimize their operations.

 Big data can be explained in terms of

volume, velocity, and variety. It refers to

massive datasets that can be wide-ranging

(structured, unstructured, or semi-

structured) and have complex structures.

Ten percent of data collected and generated

by businesses is structured, ten percent is

semi-structured, and the rest is unstructured.

These datasets can pose significant

difficulty in storing, analyzing, and

visualizing them. Big data analytics is the

research process into such datasets to

identify patterns and hidden correlations.

The data generated by ATM daily

transactions is so massive that it can be

termed Big Data.

mailto:shuja@pucit.edu.pk

Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA (pp. 9 -24)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023

10

 Managing, processing, and analyzing this

vast data offers great complexity and

difficulty. So, robust and scalable data

pipelines are required for this purpose. Data

pipelines are classified into many categories,

one of them is ETL. ETL stands for Extract,

Transform, and Load. The ETL pipelines

function like circulatory systems, moving data

from its source to the intended destination and

enabling near real-time analysis and decision-

making. The source and the destination can be

separated physically, and transformations may

take place in between. Data is retrieved from

various heterogeneous sources such as

databases, APIs, or other structured or

unstructured sources during the extraction

phase. The extracted data can be of different

formats, e.g., text files, images, videos,

emails, XML, JSON, CSV, etc. The

transformation phase is quite diverse. For

instance, basic transformation may include

replacing NULL values with a zero or

removing duplicate values. Transformation

may have joins, which can be complex

sometimes, aggregation of rows, splitting of

columns, etc. In this phase, the data is

transformed to make it usable at the

destination. In this phase, the transformed data

is loaded into the destination. The destination

can be a traditional or non-traditional

database, visualization tools, machine

learning models, or deep learning models.

2. Literature Review

In the “Age of Data,” industries and public
bodies are producing vast amounts of new data
at an unprecedented rate. Organizations invest
heavily in utilizing this data to create value
through big data analytics. The premise is that
by analyzing large volumes of unstructured
data from various sources, actionable insights
can transform businesses and provide a
competitive edge. These data-driven insights
are crucial, especially for organizations in fast-
paced environments where informed decisions
are vital[15]. Collecting data from multiple
resources, processing it for analytical
purposes, and transporting it to the destination
is challenging, and data pipelines are used to

manage it efficiently. Data pipelines have
become a necessity for all data-driven
companies[1].

Raj et al. [2] created a pipeline for
analyzing datasets containing trip records of
Uber, yellow, and green taxis using big data
technologies such as MapReduce, Hive, and
Spark. The analysis enabled us to suggest
whether yellow, green, or Uber is the right
choice for a rider. This system could suggest
the regions to focus on for drivers depending
on competitor presence and historical pickups.
Mehmood and Anees[3] focused on designing
distributed real-time ETL architecture for
unstructured big data. They proposed an
architecture using Apache Kafka, MongoDB,
and Apache Spark. The method they presented
and employed for experimentation can be
easily applied when distributed data needs to
be combined with a fast incoming unstructured
stream of data in real-time. Farki and
Noughabi [4] suggested a real-time blood
pressure prediction method. Apache Kafka and
Apache Spark were utilized to handle the large
influx of incoming signals from diverse
sources, encompassing wearable technology
and IoT sensors. Machine learning algorithms
such as K-means and Random Forest
Regression are implemented using Spark
MLlib to improve the precision of this model.

Leveraging big data technologies like
Apache Kafka and Apache Spark simplifies
the management of data pipelines. Apache
Kafka streamlines the processing of vast
volumes of real-time data from diverse
sources, offering fault tolerance, scalability,
and efficient data handling. On the other hand,
Apache Spark provides a scalable and practical
approach to both machine learning model
development and real-time data processing
tasks.[4].

 With the growing volume of data, the ETL

jobs of many enterprises may take hours or

days to complete. This latency may cause

incorrect decision-making. So, there is a need

to optimize the ETL pipeline data flow as the

demand for shorter time processing time for

ETL processes is increasing. Various case

studies have provided evidence of the efficacy

Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA (pp. 9 -24)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023

11

of these approaches in practical settings. For

instance, a research investigation conducted

by Ranjan J (2009)[10] discovered that

implementing data warehousing and business

intelligence tools, alongside optimized data

extraction processes, yielded notable

enhancements in the performance of ETL

tasks within a prominent financial services

organization. According to [11], parallel

processing is a powerful technique that

enhances the performance of ETL processes

by executing multiple tasks simultaneously. It

increases overall throughput, allows

scalability with additional resources, reduces

latency, and improves fault tolerance. Task

parallelism divides large ETL jobs into

smaller tasks executed through thread-based,

process-based, or cluster-based parallelism.

Pipeline parallelism divides jobs into stages,

executed via multi-threaded, multi-process, or

multi-node pipelines. Cloud-based parallel

processing utilizes cloud services for

distributed execution. Data partitioning

divides large datasets for parallel processing.

Conversely, caching stores frequently

accessed data in temporary storage, reducing

retrieval time source system load and

improving scalability and data consistency.

In-memory, disk-based, and distributed

caching strategies can be used. The choice of

parallel processing and caching strategies

depends on data, processing time, and

resource requirements. These techniques

collectively optimize ETL performance and

efficiency.
Blockchain is the technology behind the

birth of Bitcoin and cryptocurrency. According
to Bhutta et al.[5], Blockchain’s key
characteristics include decentralization,
transparency, autonomy, security,
immutability, traceability, democratization,
and fault tolerance. Blockchain is a
transformational technology that can provide a
basis to develop distributed and secure
applications for industries like finance, health
care, government, manufacturing, distribution,
etc. One use case described by Teogenes &
Gomes[6] is using blockchain in e-voting
systems. The current voting methods,
electronic or not, cause an unsatisfactory level

of voter confidence. Blockchain would
leverage security, transparency, and
immutability to increase voter confidence and
strengthen democracy.

Ali Syed et al.[7], talks about the use of
blockchain in the vehicle industry. BMW has
implemented blockchain technology to handle
its asset and logistics operations; since 2016,
Toyota has invested in blockchain-based
supply chain management. Furthermore,
BMW, Ford, Renault, and General Motors are
part of the Mobility Open Blockchain Initiative
(MOBI), including IBM, Bosch, and
Blockchain at Berkeley, among 30 other
companies. MOBI’s primary objective is to
encourage the adoption of blockchain
technology and establish industry-wide
collaboration.

 According to Monrat et al.[8], Blockchain

can be used in health care to trace medicines

and patient data. One of the major concerns for

the healthcare industry is managing patient

data integrity. Blockchain can solve data

integrity problems because of its immutable

and secure nature. Haderet al.[9], presented a

framework that integrates blockchain and big

data to enhance supply chain traceability and

facilitate information sharing within the

textile industry.
In conclusion, the literature review

highlights the significance of data pipelines in
managing and processing data efficiently in
today’s data-driven landscape. It explores the
implementation of big data technologies, such
as Apache Kafka and Apache Spark, for
optimized data management. Moreover, it
emphasizes the potential of blockchain
technology in various industries, including e-
voting, the automotive sector, healthcare, and
supply chain management. The reviewed
studies demonstrate the real-world efficacy of
these approaches and lay the foundation for
further research and innovation in data pipeline
management and blockchain integration.

Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA (pp. 9 -24)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023

12

3. Technological Frameworks

3.1 Apache Kafka

 In distributed stream processing

applications, ensuring strong correctness

guarantees in the face of unexpected failures

and out-of-order data is crucial. This provides

reliable and authoritative results without

depending on complementary batch results.

While existing systems tackle issues like

consistency and completeness, finding the

optimal balance between correctness,

performance, and cost remains a practical

challenge for users. Apache Kafka addresses

this challenge through its core design for

stream processing, leveraging its persistent

log architecture for storage and

communication between processors. By doing

so, it achieves the desired correctness

guarantees. Kafka Streams, a scalable stream

processing client library within Apache

Kafka, utilizes read-process-write cycles to

capture state updates and outputs as log

appends, providing a robust and reliable

solution [13].

 In the current era of big data, the primary

challenge lies in collecting the vast amounts of

data generated [15]. Apache Kafka, a free and

open-source distributed streaming

platform/messaging system, stands out for its

capability to manage large volumes of

incoming data streams. It is widely utilized for

data extraction from diverse and

heterogeneous sources, owing to its ability to

ingest expanding data volumes from

unstructured or semi-structured data sources.

Renowned organizations like Twitter,

Walmart, and others extensively use Kafka.

Apache Kafka’s key features, such as high

throughput, scalability, fault tolerance, and

reliability, make it an excellent and preferred

choice for handling ATM transaction data.

Fig. 1: A typical ANN model

 Kafka consists of clusters of multiple

brokers that store data assigned to different

Kafka topics. A topic can have multiple

partitions and be replicated across multiple

brokers.

 Data producers write data on different

Kafka topics. The number of partitions and

replication factors for a Kafka topic can be

defined at the time of Kafka topic creation. A

partition consists of messages in a sequence,

and new messages are added at the end of the

partition. Replication of topics across multiple

brokers prevents data loss in case of a broker

Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA (pp. 9 -24)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023

13

failure. Consumers subscribe to a specific

Kafka topic and fetch messages from it. A

consumer may belong to a consumer group. A

consumer can be a database such as HBase

Cassandra or a real-time consumer such as

Spark or Storm.

 Numerous companies across various

industries have adopted Apache Kafka as the

fundamental infrastructure for data pipelines,

streaming analytics, data integration, and

critical applications. Data in Kafka is

organized into topics, each of which can have

multiple partitions. These partitions are

maintained as immutable sequences of

records, functioning like logs. Producers can

continuously add data to partitions, while

consumers can continuously read from them

[16].

3.2 Apache Spark

 Big data analytics, crucial in storing,

processing, and analyzing massive datasets,

has become indispensable [15]. With the

emergence of distributed computing

frameworks like Spark, efficient solutions to

explore vast amounts of data are now

available. Spark’s popularity has surged due

to its accessible application programming

interface (API) and exceptional performance,

surpassing the MapReduce framework. The

default system parameters in Spark make it

effortless for system administrators to deploy

their applications and measure specific cluster

performance using factory-set parameters

[12].

 Apache Spark, a widely adopted open-

source framework, is renowned for its ability

to handle extensive data processing tasks. It

offers a programming interface that facilitates

cluster programming with implicit data

parallelism and ensures fault tolerance.

 The process of training machine learning

models faces challenges that cause

slowdowns, such as the dataset size and the

optimization parameters needed to create the

best-fitting model. To address these issues,

researchers have sought a more suitable

approach. One potential solution is employing

the Apache Spark tool, a high-speed cluster

computing framework and open-source

distributed programming tool for clusters.

Additionally, Spark performs operations in

memory, further enhancing its efficiency [17].

 Spark provides Java, Scala, Python, and R

APIs and an optimized engine that executes

general execution graphs. Spark excels in

iterative computations, making it an ideal

choice for creating large-scale machine-

learning applications.

 In the Apache Spark architecture, when the

Driver Program executes, it calls the actual

application program and establishes a

SparkContext containing all the fundamental

functions. Alongside the SparkContext, the

Spark Driver comprises other essential

components such as the DAG Scheduler, Task

Scheduler, Backend Scheduler, and Block

Manager. These components combine to

convert user-written code into jobs executed

on the cluster.

 The Cluster Manager is responsible for

managing the execution of various jobs within

the cluster. The Spark Driver works hand in

hand with the Cluster Manager to oversee the

execution of different jobs. The Cluster

Manager allocates resources for the job,

divides them into smaller tasks, and

distributes them to worker nodes. The Spark

Driver takes charge of controlling this

execution process.

 Multiple worker nodes can be employed to

process an RDD created in SparkContext, and

the results can also be cached for optimization.

The Spark Context receives task information

from the Cluster Manager and enqueues it on

worker nodes. The executor manages the

execution of these tasks. The lifespan of

executors aligns with that of the Spark

Application, and if desired, increasing the

number of workers can enhance the system’s

performance, allowing for the division of jobs

Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA (pp. 9 -24)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023

14

into more manageable parts.

Fig. 2: Apache Spark Internal Architecture

 There are several platforms and engines

available for transforming the data, for

example, Hadoop MapReduce, Apache Flink,

and Apache Storm, but the spark is preferred

for our ETL pipeline considering the

following reasons:

 Scalability: Spark is designed to handle

extensive scale data processing, making it one

of the best choices for data transformation.

Distributing computation across a cluster of

machines enables parallel processing and

effective utilization of available resources.

 Speed: Spark is renowned for its

exceptional processing speed. It achieves this

by conducting computations in memory,

minimizing disk input/output (I/O), and

considerably expediting data transformation

operations. Moreover, Spark’s capability to

store intermediate data in memory through

caching further amplifies its performance,

resulting in accelerated data transformation

tasks.

 Fault Tolerance: Spark incorporates

inherent fault tolerance mechanisms,

providing a robust system for handling

failures. It can automatically recover from

errors, guaranteeing uninterrupted progress in

the data transformation process.

 Flexibility: Spark offers a wide range of

programming interfaces, including Java,

Scala, Python, and R. Moreover, It also boasts

a comprehensive ecosystem comprising

numerous libraries and extensions.

3.3 Random Walk Model

 Blockchain technologies have become

prominent in recent years, with many experts

citing the technology’s potential applications

regarding different aspects of any industry,

market, agency, or governmental

organization. In the brief history of

blockchain, many achievements have been

made regarding how blockchain can be

utilized and the impacts it might have on

several industries.[18].

 Blockchain is recognized for its

decentralized, autonomous, and immutable

characteristics, providing various features

such as verification, fault tolerance,

anonymity, auditability, and transparency

[14]. Blockchain is a distributed and

decentralized ledger that records transactions

across a network of computers, ensuring

immutability. It provides essential features

such as authentication, integrity, traceability,

privacy, confidentiality, and fault tolerance.

 There are three main types of blockchains:

 Permissionless or Public blockchains:

These allow anyone to join the network and

participate in managing the blockchain.

 Permissioned or Private blockchains:

Only invited individuals from a single

organization can join the network and take

part in managing the blockchain.

 Consortium blockchains: Invited

members from various organizations can join

and participate in the consortium blockchain’s

management.

 Here are some key aspects that contribute

to blockchain’s security and immutability:

Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA (pp. 9 -24)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023

15

1. Decentralization: To collectively

maintain and validate the database,

blockchain operates on a decentralized

network of nodes. These nodes working

in peer-to-peer architecture form a

blockchain network. This decentralized

system removes the need for a central

authority, making it resistant to single

points of failure and reducing the risk of

unauthorized tampering or data

manipulation.

2. Distributed Ledger: The blockchain

functions as a distributed ledger,

chronologically recording all transactions

or data entries. Within the network, each

node retains a copy of the complete

blockchain, and the addition of

transactions to the ledger follows a

consensus mechanism like proof-of-work

or proof-of-stake. This decentralized

approach guarantees the existence of

multiple copies of the ledger, rendering it

challenging for attackers to alter the data

without consensus from the majority of

nodes.

3. Cryptographic Hash Functions:

Blockchain employs cryptographic hash

functions to safeguard the data’s

integrity. Every block within the

blockchain contains a unique hash value

generated based on its data content. If any

alteration is made to the data within a

block, it will lead to a distinct hash value,

making any tampering easily detectable.

This crucial characteristic guarantees that

once a block is added to the blockchain, it

becomes practically impossible to modify

or erase the data without being noticed.

4. Immutable Records: Once data is

added to the blockchain, it becomes

virtually immutable. The decentralized

and distributed nature of the blockchain,

coupled with the cryptographic hash

functions, ensures that historical

transactions or data entries resist

modification. This immutability provides

high trust and transparency, as it becomes

difficult to dispute or alter past records.

5. Consensus Mechanism: Blockchain

networks rely on consensus mechanisms

to agree on the validity of transactions or

data entries. Consensus algorithms ensure

that all nodes in the network reach an

agreement on the order and validity of

transactions, preventing fraudulent or

conflicting entries. This consensus

process strengthens the security of the

blockchain by requiring a majority of

nodes to validate and agree on the data

being added.

6. Encryption: Blockchain can integrate

encryption techniques to safeguard

sensitive data. Encryption guarantees that

the data stored on the blockchain remains

confidential and can only be accessed by

authorized parties possessing the correct

decryption keys. Through data

encryption, blockchain adds an extra

layer of security, particularly for sensitive

information like personal or financial

data.

 By combining these elements, blockchain

technology provides a secure and immutable

database resistant to tampering, fraud, and

unauthorized access. Its decentralized nature,

cryptographic principles, and consensus

mechanisms create a trustless environment

where participants can confidently interact

and rely on the integrity and security of the

stored data.

4. Proposed Solution

4.1 Data Collection and Ingestion

 Apache Spark is used for data collection

and ingestion. The whole process is described

in this section.

4.1.1 Overview of ATM transaction data

 Financial transactions conducted at ATMs

provide valuable information about customer

Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA (pp. 9 -24)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023

16

behavior, banking patterns, and cash flow.

Here is an overview of the typical information

captured during ATM transactions:

 Date and Time: The timestamp indicates

when the transaction took place. It includes

the date, time, and time zone.

 Transaction Type: Specifies the nature of

the transaction, such as cash withdrawal, cash

deposit, funds transfer, or other services.

 ATM Location: Records the physical

location of the ATM, identified by an address

or geographic coordinates (latitude and

longitude).

 Card Information: Encrypted details

related to the card used for the transaction,

including the card number and expiration date.

Note that sensitive cardholder data like the

cardholder’s name, PIN, or CVV (Card

Verification Value) is typically not stored in

the transaction data.

 Transaction Amount: Indicates the

monetary value involved in the transaction.

 Account Information: Identifies the bank

account associated with the transaction,

usually by an account number or an encrypted

identifier.

 Transaction Result: Specifies the

transaction’s outcome, whether it was

successful, declined, canceled, or encountered

an error.

 ATM Terminal ID: A unique identifier

assigned to each physical ATM terminal,

distinguishing it from other ATMs within a

network.

 Currency: Denotes the currency in which

the transaction was conducted, such as USD

(United States Dollar), EUR (Euro), GBP

(British Pound), etc.

 Additional Messages: Records any

additional message utilized during the

transaction, like language selection, receipt

printing, or screen customization.

 The dataset used in this paper can be

accessed at

https://www.kaggle.com/datasets/sparnord/da

nish-atm-transactions.

4.1.2 Integration of Kafka for ATM

Transaction Data Ingestion

 We are using Kafka to collect ATM

transaction data as it can handle high-

throughput data streams, provide fault

tolerance, and enable real-time processing.

Collecting ATM transaction data from

different ATMs involves setting up a Kafka

infrastructure to receive, store, and process the

data. Here’s an explanation of the process:

 ATMs are the source here. An ATM does

not have its own dedicated Kafka producer.

Instead, a middleware layer containing several

Kafka producers is usually responsible for

collecting the transaction data from multiple

ATMs. This system acts as a producer and

forwards the data to appropriate Kafka topics.

 A Kafka topic is explicitly created for

storing ATM transaction data. The

middleware produces the collected ATM data

for this Kafka topic. A Kafka topic is a

channel where ATM transaction data is

organized and published. Think of it as a

virtual container or a labeled stream of data.

 After the data is produced into the Kafka

topic, the Kafka cluster provides the

infrastructure to handle the data flow. A Kafka

cluster consists of multiple Kafka brokers that

form a distributed system. Brokers are

individual server instances that include the

distributed messaging system. Each broker is

responsible for handling a portion of the data,

including storing and replicating the data

across the cluster. It facilitates the streaming

of data in real-time. As new data arrives, it is

immediately made available to consumers

subscribed to the corresponding Kafka topic,

enabling real-time processing, analytics, and

integration with downstream systems. A

https://www.kaggle.com/datasets/sparnord/danish-atm-transactions
https://www.kaggle.com/datasets/sparnord/danish-atm-transactions

Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA (pp. 9 -24)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023

17

Kafka consumer refers to an application or

service subscribing to a Kafka topic and

consuming the transaction message published

to that topic for further processing. The

following figure explains the process:

Fig. 3: Integration of Kafka for ATM transaction data ingestion

4.2 Data Transformation and Analysis

 Various transformations can be applied

depending on the dataset and specific use case.

These transformations include Filtering,

Mapping, Aggregation, Data Cleansing, and

Machine Learning Transformations.

 In our particular use case, the initial step

involves mapping the dataset onto a specific

schema, eliminating non-essential attributes.

Subsequently, Data Cleansing is executed to

address missing values and duplicates. Lastly,

the Data Frame is aggregated based on the

transaction month. The desired output

comprises grouped rows of data that have

been cleansed, mapped, and organized

according to the month of the transactions.

Fig. 4: Data Transforming using Apache Spark

Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA (pp. 9 -24)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023

18

The depicted diagram illustrates the workflow

of the ETL (Extract, Transform, Load)

process. Initially, the ATM Transaction Data

is extracted and forwarded to Kafka topics.

Following extraction, the data is transformed

using Apache Spark. This transformation

phase encompasses Mapping, Cleansing, and

Aggregating the data frame based explicitly

on the month attribute. After the

transformation step, the next stage is loading,

during which the transformed data is loaded

into a database, depending on the ETL

configuration in use.

4.3 Data Storage and Security

 Implementing blockchain for ATM

transaction data storage can provide security,

transparency, and immutability to the

transaction records. Multiple blockchain

platforms can be used depending on the

requirement. The most popular platforms

include Ethereum, Hyperledger Fabric, and

Corda. The choice of platform depends on the

scalability, consensus mechanism, smart

contract, and community support.

Using a platform like Ethereum, you can

create smart contracts to define the rules and

logic for processing transactions. Smart

contracts are self-executing contracts with

predefined conditions, enabling automated

and trustworthy processing. Define the

necessary functions and events to handle the

ATM transaction data. Define the data

structure through which information should be

stored on the blockchain.

struct Transaction {

 uint256 dateAndTime;

 string transactionType;

 string atmLocation;

 CardInformation cardInfo;

 uint256 transactionAmount;

 AccountInformation

accountInfo;

 string transactionResult;

 string atmTerminalID;

 string currency;

 string additionalMessages;

 Write a smart contract that defines the

functions and events to handle ATM

transactions. Smart contracts are crucial in

handling ATM transaction data in a

blockchain-based system. Smart contracts are

the system’s backbone, ensuring ATM

transaction data’s accuracy, transparency,

security, and trustworthiness in a blockchain-

based environment. They provide a

decentralized and automated approach to

processing and storing transaction data,

eliminating the need for intermediaries and

enhancing the efficiency and reliability of the

overall ATM transaction process.

Input: Kafka topic (string)

Processing:

contract KafkaDataLoader {

 mapping(string => bool) private

processedRecords;

 event RecordLoaded(string recordId);

 function loadFromKafka(string memory

kafkaTopic) public {

 KafkaConsumer consumer =

createConsumer();

 consumer.subscribe(kafkaTopic);

 while (true) {

 Message message =

consumer.consume();

 string memory recordId =

extractRecordId(message);

 string memory recordData =

extractRecordData(message);

 if (!processedRecords[recordId]) {

 bool isValid =

validateRecordData(recordData);

 if (isValid) {

Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA (pp. 9 -24)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023

19

 storeOnBlockchain(recordId,

recordData);

 processedRecords[recordId] =

true;

 emit RecordLoaded(recordId);

 } } } } }

 Output: Records loaded on the Ethereum

blockchain, with the event RecordLoaded

containing the recordId (string).

 This represents a smart contract called

“KafkaDataLoader” that facilitates loading

data from a Kafka topic into the blockchain.

The contract defines a mapping to keep track

of processed records and emits an event when

a record is successfully loaded. The

“loadFromKafka” function creates a Kafka

consumer, subscribes to the specified topic,

and continuously consumes messages. It

extracts the record ID and data from each

message, validates the data, and stores it on

the blockchain if it is deemed valid. The

contract ensures that each record is processed

only once by checking the mapping. Overall,

this smart contract enables the integration of

Kafka data with the blockchain, providing

transparency, immutability, and audibility to

the loaded data.

 In the next step, we will submit

transactions to the blockchain. Ethereum

SDK, such as Web3.js, connects with the

deployed contract. The “storeOnBlockchain”

function is responsible for submitting the

transactions to the Ethereum blockchain.

Monitor the Ethereum network to ensure the

transactions are successfully added to the

blockchain. Listen for the NewTransaction

event emitted by the smart contract to track

new transactions.

4.4 Overall Architecture of Pipeline

Using Kafka to collect ATM transaction data

enables high-throughput data streams, fault

tolerance, and real-time processing. ATM data

is collected by a middleware layer with Kafka

producers, forwarded to dedicated Kafka

topics, and consumed by applications for

processing and analytics. ETL process applies

filtering, mapping, aggregation, and data

cleansing. Use cases involve mapping to a

schema, data cleansing for missing values and

duplicates, and aggregation.

 Based on transaction months. Blockchain

implementation for ATM transaction data

offers security, transparency, and

immutability. Smart contracts play a vital role,

defining functions and events to process and

store transaction data, ensuring accuracy,

trustworthiness, and decentralization.

 The following diagram describes the

architecture of the pipeline proposed in this

paper:

Fig. 5: Overall Architecture of Pipeline

Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA (pp. 9 -24)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023

20

5. Results and Discussion

5.1 Analysis of ETL Pipeline

Performance

 The following section presents the

performance evaluation of the ETL Pipeline.

The experiment aimed to optimize the

performance of the ETL Pipeline while

considering the security factor.

 Firstly, the goal was to improve the

performance of the extraction phase. This

phase includes sending the 24M transaction

records data to Kafka topics. With the default

configuration of Kafka, topics with one

partition, and No Optimization method, the

execution time is almost 6 minutes. Now, the

goal is to optimize the methods involved so

that the execution time can be reduced.

 The first optimization method undertaken

was to change the default configuration for

Kafka. Here are the changes made to the

Kafka configuration:

● Acks was set to 1, meaning the producer

will only wait for the acknowledgment

from the leader broker.

● Batch size was set to 32kb so that more

data to a broker can be sent at a time.

● Linger. ms, the delay before sending a

new data packet was set to 5ms so that

producers have enough time to store data

in the batch before sending.

● Topics are created with three partitions

rather than one by default.

After all these configuration changes,
execution time was recorded to be almost 4.6
minutes. Then, the most critical optimization
step suggested in [2] is the process of
Partitioning and Parallelization. To achieve the
following, the data source was partitioned into
multiple sources, and multiple producers sent
the partitioned data to Kafka topics. But only
Partitioning wasn’t enough for a good result as
the execution time was decreased to almost 3.5
minutes. The last method to optimize this
phase was Parallelization, which is achieved
using multi- processing. Processes that send
data to Kafka-topics were run in parallel, and
the whole data was sent to Kafka-topics in
around 2.5 minutes, which appears suitable for
sending 24 million rows of data.

 The next phase is the transformation and

loading phase. This phase includes reading

from Kafka topics, mapping, cleaning,

aggregating, and loading the transformed data

into a database. The non-optimized

transformation phase took around 20 minutes,

which is unacceptable.

 For better performance, the main data

frame containing the whole data was

partitioned into multiple sub-data frames.

Now, transformation methods like filtering

based on month cleaning were applied on sub-

data frames instead of the main data frame,

resulting in a sufficient decrease in execution

time. Each sub-data frame was executed in

parallel to optimize the complete processes.

Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA (pp. 9 -24)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023

21

This results in a final execution time of almost

7 minutes.

 Now, to compare how much optimization

we have achieved, the overall execution time

of the whole ETL Process of non-optimized

and optimized ETL Pipeline is shown in the

figure:

5.2 Data Security Evaluation Using

Blockchain

 Data security is critical when utilizing

blockchain technology to store ATM

transaction data. Here’s an evaluation of the

security measures mentioned in the provided

information:

1. Access Control: Implementing roles

and permissions helps ensure that only

authorized individuals can perform

specific actions. By defining roles for

ATM operators, bank administrators, and

auditors, access to sensitive operations

can be restricted. Using modifiers and

require statements in the smart contract

enforces these permissions effectively.

2. Encryption: Encrypting sensitive

data fields before storing them on the

blockchain adds an extra layer of

protection. Utilizing encryption

algorithms like AES or RSA helps ensure

the confidentiality of card information,

account details, and transaction amounts.

Encrypting the data before storing it on

the blockchain makes it more difficult for

unauthorized parties to access sensitive

information.

3. Event Logging: Emitting events for

critical operations and storing event logs

off-chain in a secure and centralized

logging system aids in auditing and

analysis. By keeping track of successful

transactions, account balance updates,

and access control changes, it becomes

easier to monitor and review activities for

any potential security breaches.

4. Secure Data Handling: Avoiding the

storage of sensitive information such as

card PINs or CVV numbers on the

blockchain is crucial. These details

should be handled securely outside the

blockchain, with the blockchain storing

only the necessary transaction metadata.

Adhering to secure coding practices helps

mitigate common vulnerabilities and

ensures the integrity of the stored data.

5. Code Auditing and Testing:

Conducting thorough code reviews and

security audits is essential to identify and

address potential vulnerabilities. By

testing the smart contract extensively,

Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA (pp. 9 -24)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023

22

including simulated attack scenarios,

weaknesses can be discovered and

rectified. Regular audits and testing help

maintain a robust and secure smart

contract for handling ATM transaction

data.

6. Contract Upgradability:

Implementing a mechanism for contract

upgradability is essential for addressing

security patches or adding enhancements.

However, caution must be exercised to

ensure that contract upgrades do not

compromise the integrity of stored

transaction data or introduce new security

risks. Best practices should be followed to

maintain the security of the data during

the upgrade process.

7. External Dependency Security:

Using verified and audited libraries for

cryptographic operations and other

external dependencies is crucial. Relying

on trusted code reduces the risk of

introducing vulnerabilities or

compromising data security. Care should

be taken to thoroughly evaluate and vet

any external dependencies in the

blockchain solution.

8. Regular Updates and Patching: Staying

informed about security updates and

patches for the blockchain platform and

smart contract frameworks is necessary.

Promptly applying these updates ensures

that known vulnerabilities are addressed,

and the latest security measures are in

place. Regular updates and patching are

vital for maintaining a secure

environment for ATM transaction data.

9. Third-Party Audits: Engaging

independent security auditors helps

ensure a comprehensive evaluation of the

smart contract handling ATM transaction

data. Third-party auditors can identify

potential security weaknesses, validate

the effectiveness of implemented security

measures, and provide recommendations

for improvement. These audits offer an

objective perspective on the security of

the blockchain solution.

 By implementing these security measures

and regularly evaluating the data security

aspects, ATM transaction data stored on the

blockchain can benefit from increased

integrity and confidentiality.

5.3 Data Security Evaluation Using

Blockchain

 The following table highlights the

differences between blockchain and

traditional databases:

 Block Chain Traditional Databases

Immutable and

Tamper-Resistant

Blockchain databases store data in

linked blocks with cryptographic

hashes, ensuring highly secure and

tamper-resistant storage.

Traditional databases may

rely on centralized servers or

administrators, which can be

vulnerable to unauthorized

modifications.

Decentralization Blockchain databases’ decentralized

nature, distributing copies across a

node network, mitigates single points

of failure and centralized attack

targets.

On the other hand,

traditional databases often

have a central server, which

can be a potential weakness.

Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA (pp. 9 -24)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023

23

Consensus

Mechanisms

Consensus mechanisms like proof-

of-work or proof-of-stake in

blockchain databases validate and

require agreement among most

network participants before adding

transactions to the chain.

In traditional databases,

transactions are often

validated and controlled by a

central authority, which may

be more susceptible to

corruption or hacking

attempts.

Encryption and

Security

Measures

Due to their distributed ledger nature,

blockchain databases employ robust

encryption for securing transactions

and identities.

Traditional databases can

implement encryption

techniques to protect data.

Privacy and

Confidentiality

While blockchain offers transparency

and immutability, it introduces

privacy concerns as certain data

might be visible to all participants

based on the design.

Traditional databases, on the

other hand, can implement

access controls and

encryption to restrict access

to sensitive information.

Performance and

Scalability

Blockchain databases may need help

with scalability and performance due

to slower transactions and limited

scalability tied to consensus

mechanisms and distributed

structure.

Traditional databases,

especially those designed for

high-performance

environments, can often

handle larger volumes of

data and provide faster

response times.

6. Conclusion

 ETL processes are known to be complex

and resource-consuming. With the

advancement of financial technology, the

security and integrity of customer data have

emerged as a big concern. So, there is a

definite need to focus on the security aspects

of a pipeline. However, the enhancement of

pipeline security comes with a compromise on

pipeline performance. To achieve a better

level of security, we need to increase pipeline

performance to maintain an optimum balance

between security and performance.

 Blockchain is known for its secure nature.

In this paper, we propose that the ATM

transaction data should be stored in a

blockchain in the load phase of the ETL

pipeline. This ensures the security and

integrity of crucial financial data as

Blockchain provides immutability,

transparency, traceability, decentralization,

reliability, privacy, confidentiality, and fault

tolerance. Blockchain offers

encryption/decryption, cryptography, digital

signature and timestamp, and hash trees to

ensure security. Compromising on security is

synonymous with compromising on customer

trust. However, blockchain has the

disadvantage of low throughput, making the

pipeline slow. So, we tried to optimize the

pipeline performance using parallelization and

partitioning in the extraction phase. Before

optimization, for 24 million transactions, it

took 6 min to send data to Kafka topics. After

optimization, it took 2.5 minutes. In this way,

we enhanced the pipeline security without

affecting performance.

REFERENCES

[1] A. Raj, J. Bosch, H. H. Olsson, and T. J.
Wang, “Modelling Data Pipelines,” 2020
46th Euromicro Conference on Software
Engineering and Advanced Applications
(SEAA), Portoroz, Slovenia, 2020, pp.
13-20, doi:
10.1109/SEAA51224.2020.00014.

Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA (pp. 9 -24)

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023

24

[2] H. Sun, S. Hu, S. McIntosh, and Y. Cao,
“Big data trip classification on the New
York City taxi and Uber sensor network,”
Journal of internet Technology, vol. 19,
no. 2, pp. 591–598, 2018.

[3] Mehmood, E., Anees, T. Distributed real-
time ETL architecture for unstructured
big data. Knowl Inf Syst 64, 3419–3445
(2022). https://doi.org/10.1007/s10115-
022-01757-7

[4] A. Farki and E. A. Noughabi, “Real-Time
Blood Pressure Prediction Using Apache
Spark and Kafka Machine Learning,”
2023 9th International Conference on
Web Research (ICWR), Tehran, Iran,
Islamic Republic of, 2023, pp. 161-166,
doi:
10.1109/ICWR57742.2023.10138962.

[5] M. N. M. Bhutta et al., “A Survey on
Blockchain Technology: Evolution,
Architecture and Security,” in IEEE
Access, vol. 9, pp. 61048-61073, 2021,
doi: 10.1109/ACCESS.2021.3072849.

[6] Moura, Teogenes & Gomes, Alexandre.
(2017). Blockchain Voting and its Effects
on Election Transparency and Voter
Confidence. 574-575.
10.1145/3085228.3085263.

[7] T. Ali Syed, A. Alzahrani, S. Jan, M. S.
Siddiqui, A. Nadeem and T. Alghamdi,
“A Comparative Analysis of Blockchain
Architecture and its Applications:
Problems and Recommendations,” in
IEEE Access, vol. 7, pp. 176838-176869,
2019, doi:
10.1109/ACCESS.2019.2957660.

[8] A. A. Monrat, O. Schelén, and K.
Andersson, “A Survey of Blockchain
From the Perspectives of Applications,
Challenges, and Opportunities,” in IEEE
Access, vol. 7, pp. 117134-117151, 2019,
doi: 10.1109/ACCESS.2019.2936094.

[9] Hader, Manal & Tchoffa, David & El
Mhamedi, Abderrahman & Ghodous, P.
& Dolgui, Alexandre & Abouabdellah,
Abdellah. (2022). Applying integrated
Blockchain and big data technologies to
improve supply chain traceability and
information sharing in the textile sector.
Journal of Industrial Information
Integration. 28. 100345.
10.1016/j.jii.2022.100345.

[10] Jayanthi Ranjan, “Business Intelligence:
Concepts, Components, Techniques and
Benefits,” Journal of Theoretical and
Applied Information Technology, vol. 9,
no. 1, pp. 60-70, 2009.

[11] Dhamotharan Seenivasan (2023). We are
improving the Performance of the ETL
Jobs. 71(3), pp.27–33. Doi

https://doi.org/10.14445/22312803/ijctt-
v71i3p105.

[12] Ahmed, N., Barczak, A.L.C., Susnjak, T.
et al. A comprehensive performance
analysis of Apache Hadoop and Apache
Spark for large scale data sets using
HiBench. J Big Data 7, 110 (2020).
https://doi.org/10.1186/s40537-020-
00388-5

[13] Wang, G., Chen, L., Dikshit, A.,
Gustafson, J., Chen, B., Sax, M.J.,
Roesler, J., Blee-Goldman, S., Cadonna,
B., Mehta, A., Madan, V. and Rao, J.
(2021). Consistency and Completeness.
Proceedings of the 2021 International
Conference on Management of Data.
doi:https://doi.org/10.1145/3448016.345
7556.

[14] Guo, H. and Yu, X. (2022). A Survey on
Blockchain Technology and its security.
Blockchain: Research and Applications,
3(2), p.100067. doi
https://doi.org/10.1016/j.bcra.2022.1000
67.

[15] Mikalef, P., Boura, M., Lekakos, G. and
Krogstie, J. (2019). Big data analytics and
firm performance: Findings from a
mixed-method approach. Journal of
Business Research, [online] 98(2),
pp.261–276. Doi
https://doi.org/10.1016/j.jbusres.2019.01.
044.

[16] Wang, G., Chen, L., Dikshit, A.,
Gustafson, J., Chen, B., Sax, M.J.,
Roesler, J., Blee-Goldman, S., Cadonna,
B., Mehta, A., Madan, V. and Rao, J.
(2021). Consistency and Completeness.
Proceedings of the 2021 International
Conference on Management of Data.
doi:https://doi.org/10.1145/3448016.345
7556.

[17] Haggag, M., Tantawy, M.M. and El-
Soudani, M.M.S. (2020). Implementing a
Deep Learning Model for Intrusion
Detection on Apache Spark Platform.
IEEE Access, 8, pp.163660–163672.
doi:https://doi.org/10.1109/access.2020.3
019931.

[18] Berdik, D., Otoum, S., Schmidt, N.,
Porter, D. and Jararweh, Y. (2021). A
Survey on Blockchain for Information
Systems Management and Security.
Information Processing & Management,
58(1), p.102397.
doi:https://doi.org/10.1016/j.ipm.2020.1
02397.

https://doi.org/10.1007/s10115-022-01757-7
https://doi.org/10.1007/s10115-022-01757-7
https://doi.org/10.14445/22312803/ijctt-v71i3p105
https://doi.org/10.14445/22312803/ijctt-v71i3p105
https://doi.org/10.1186/s40537-020-00388-5
https://doi.org/10.1186/s40537-020-00388-5
https://doi.org/10.1145/3448016.3457556
https://doi.org/10.1145/3448016.3457556
https://doi.org/10.1016/j.bcra.2022.100067
https://doi.org/10.1016/j.bcra.2022.100067
https://doi.org/10.1016/j.jbusres.2019.01.044
https://doi.org/10.1016/j.jbusres.2019.01.044
https://doi.org/10.1109/access.2020.3019931
https://doi.org/10.1109/access.2020.3019931

