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Abstract: 

     ATMs generate vast amounts of data daily, which needs to be analyzed and stored. Dealing 

with this data also termed big data, is a complex task, and here comes the role of ETL pipelines. 

ETL pipelines need extensive resources for operations, and their performance optimization is 

necessary as data must be dealt with in near or even real-time. If the pipeline deals with financial 

data such as ATM transactions, steps should be taken to ensure the data’s security, privacy, 

confidentiality, and integrity. This can be achieved using Blockchain technology. It is a 

distributed ledger technology having an immutable nature. It has significant advantages in terms 

of providing security, but it has disadvantages as well, such as low throughput and transactional 

latency. If blockchain is used in an ETL pipeline, it will affect the overall performance. So, to 

prevent the decline in performance, steps should be taken to optimize it. In this paper, we are 

using parallelization and partitioning as techniques to optimize performance. The primary goal 

here is to achieve maximum security while maintaining performance. 
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1. Introduction  

Today, technology has digitized the 
finance sector and changed how customers 
interact with financial institutions and get their 
services. This change can be seen in the wide 
use of Automated Teller Machines(ATMs). 
ATMs play a vital role in providing certain 
banking services at any time with convenience 
and ease. As users perform transactions using 
ATMs, a considerable amount of valuable 
financial data is generated. Businesses want to 
use this data for their benefit as it can provide 
insights into customer behaviors and 
preferences when analyzed.   

     This data can also be used for better-

aimed marketing, analyzing overall market 

patterns, and getting more business insights. 

The banking institutions can use this data to 
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take finer steps to improve customer 

experience and optimize their operations. 

     Big data can be explained in terms of 

volume, velocity, and variety. It refers to 

massive datasets that can be wide-ranging 

(structured, unstructured, or semi-

structured) and have complex structures. 

Ten percent of data collected and generated 

by businesses is structured, ten percent is 

semi-structured, and the rest is unstructured. 

These datasets can pose significant 

difficulty in storing, analyzing, and 

visualizing them. Big data analytics is the 

research process into such datasets to 

identify patterns and hidden correlations. 

The data generated by ATM daily 

transactions is so massive that it can be 

termed Big Data. 

mailto:shuja@pucit.edu.pk


 
Towards a Trustworthy and Efficient ETL Pipeline for ATM Transaction DATA                                             (pp. 9 -24 ) 

Sukkur IBA Journal of Computing and Mathematical Science - SJCMS | Vol. 7 No. 2 July – December 2023 

10 

     Managing, processing, and analyzing this 

vast data offers great complexity and 

difficulty. So, robust and scalable data 

pipelines are required for this purpose. Data 

pipelines are classified into many categories, 

one of them is ETL. ETL stands for Extract, 

Transform, and Load. The ETL pipelines 

function like circulatory systems, moving data 

from its source to the intended destination and 

enabling near real-time analysis and decision-

making. The source and the destination can be 

separated physically, and transformations may 

take place in between. Data is retrieved from 

various heterogeneous sources such as 

databases, APIs, or other structured or 

unstructured sources during the extraction 

phase. The extracted data can be of different 

formats, e.g., text files, images, videos, 

emails, XML, JSON, CSV, etc. The 

transformation phase is quite diverse. For 

instance, basic transformation may include 

replacing NULL values with a zero or 

removing duplicate values. Transformation 

may have joins, which can be complex 

sometimes, aggregation of rows, splitting of 

columns, etc. In this phase, the data is 

transformed to make it usable at the 

destination. In this phase, the transformed data 

is loaded into the destination. The destination 

can be a traditional or non-traditional 

database, visualization tools, machine 

learning models, or deep learning models.  

2. Literature Review 

In the “Age of Data,” industries and public 
bodies are producing vast amounts of new data 
at an unprecedented rate. Organizations invest 
heavily in utilizing this data to create value 
through big data analytics. The premise is that 
by analyzing large volumes of unstructured 
data from various sources, actionable insights 
can transform businesses and provide a 
competitive edge. These data-driven insights 
are crucial, especially for organizations in fast-
paced environments where informed decisions 
are vital[15]. Collecting data from multiple 
resources, processing it for analytical 
purposes, and transporting it to the destination 
is challenging, and data pipelines are used to 

manage it efficiently. Data pipelines have 
become a necessity for all data-driven 
companies[1]. 

Raj et al. [2] created a pipeline for 
analyzing datasets containing trip records of 
Uber, yellow, and green taxis using big data 
technologies such as MapReduce, Hive, and 
Spark. The analysis enabled us to suggest 
whether yellow, green, or Uber is the right 
choice for a rider. This system could suggest 
the regions to focus on for drivers depending 
on competitor presence and historical pickups. 
Mehmood and Anees[3] focused on designing 
distributed real-time ETL architecture for 
unstructured big data. They proposed an 
architecture using Apache Kafka, MongoDB, 
and Apache Spark. The method they presented 
and employed for experimentation can be 
easily applied when distributed data needs to 
be combined with a fast incoming unstructured 
stream of data in real-time. Farki and 
Noughabi [4] suggested a real-time blood 
pressure prediction method. Apache Kafka and 
Apache Spark were utilized to handle the large 
influx of incoming signals from diverse 
sources, encompassing wearable technology 
and IoT sensors. Machine learning algorithms 
such as K-means and Random Forest 
Regression are implemented using Spark 
MLlib to improve the precision of this model. 

Leveraging big data technologies like 
Apache Kafka and Apache Spark simplifies 
the management of data pipelines. Apache 
Kafka streamlines the processing of vast 
volumes of real-time data from diverse 
sources, offering fault tolerance, scalability, 
and efficient data handling. On the other hand, 
Apache Spark provides a scalable and practical 
approach to both machine learning model 
development and real-time data processing 
tasks.[4]. 

     With the growing volume of data, the ETL 

jobs of many enterprises may take hours or 

days to complete. This latency may cause 

incorrect decision-making. So, there is a need 

to optimize the ETL pipeline data flow as the 

demand for shorter time processing time for 

ETL processes is increasing. Various case 

studies have provided evidence of the efficacy 
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of these approaches in practical settings. For 

instance, a research investigation conducted 

by Ranjan J (2009)[10] discovered that 

implementing data warehousing and business 

intelligence tools, alongside optimized data 

extraction processes, yielded notable 

enhancements in the performance of ETL 

tasks within a prominent financial services 

organization. According to [11], parallel 

processing is a powerful technique that 

enhances the performance of ETL processes 

by executing multiple tasks simultaneously. It 

increases overall throughput, allows 

scalability with additional resources, reduces 

latency, and improves fault tolerance. Task 

parallelism divides large ETL jobs into 

smaller tasks executed through thread-based, 

process-based, or cluster-based parallelism. 

Pipeline parallelism divides jobs into stages, 

executed via multi-threaded, multi-process, or 

multi-node pipelines. Cloud-based parallel 

processing utilizes cloud services for 

distributed execution. Data partitioning 

divides large datasets for parallel processing. 

Conversely, caching stores frequently 

accessed data in temporary storage, reducing 

retrieval time source system load and 

improving scalability and data consistency. 

In-memory, disk-based, and distributed 

caching strategies can be used. The choice of 

parallel processing and caching strategies 

depends on data, processing time, and 

resource requirements. These techniques 

collectively optimize ETL performance and 

efficiency. 
Blockchain is the technology behind the 

birth of Bitcoin and cryptocurrency. According 
to Bhutta et al.[5], Blockchain’s key 
characteristics include decentralization, 
transparency, autonomy, security, 
immutability, traceability, democratization, 
and fault tolerance. Blockchain is a 
transformational technology that can provide a 
basis to develop distributed and secure 
applications for industries like finance, health 
care, government, manufacturing, distribution, 
etc. One use case described by Teogenes & 
Gomes[6] is using blockchain in e-voting 
systems. The current voting methods, 
electronic or not, cause an unsatisfactory level 

of voter confidence. Blockchain would 
leverage security, transparency, and 
immutability to increase voter confidence and 
strengthen democracy. 

Ali Syed et al.[7],  talks about the use of 
blockchain in the vehicle industry. BMW has 
implemented blockchain technology to handle 
its asset and logistics operations; since 2016, 
Toyota has invested in blockchain-based 
supply chain management. Furthermore, 
BMW, Ford, Renault, and General Motors are 
part of the Mobility Open Blockchain Initiative 
(MOBI), including IBM, Bosch, and 
Blockchain at Berkeley, among 30 other 
companies. MOBI’s primary objective is to 
encourage the adoption of blockchain 
technology and establish industry-wide 
collaboration. 

     According to Monrat et al.[8], Blockchain 

can be used in health care to trace medicines 

and patient data. One of the major concerns for 

the healthcare industry is managing patient 

data integrity. Blockchain can solve data 

integrity problems because of its immutable 

and secure nature. Haderet al.[9], presented a 

framework that integrates blockchain and big 

data to enhance supply chain traceability and 

facilitate information sharing within the 

textile industry. 
In conclusion, the literature review 

highlights the significance of data pipelines in 
managing and processing data efficiently in 
today’s data-driven landscape. It explores the 
implementation of big data technologies, such 
as Apache Kafka and Apache Spark, for 
optimized data management. Moreover, it 
emphasizes the potential of blockchain 
technology in various industries, including e-
voting, the automotive sector, healthcare, and 
supply chain management. The reviewed 
studies demonstrate the real-world efficacy of 
these approaches and lay the foundation for 
further research and innovation in data pipeline 
management and blockchain integration. 
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3. Technological Frameworks 

3.1  Apache Kafka 

     In distributed stream processing 

applications, ensuring strong correctness 

guarantees in the face of unexpected failures 

and out-of-order data is crucial. This provides 

reliable and authoritative results without 

depending on complementary batch results. 

While existing systems tackle issues like 

consistency and completeness, finding the 

optimal balance between correctness, 

performance, and cost remains a practical 

challenge for users. Apache Kafka addresses 

this challenge through its core design for 

stream processing, leveraging its persistent 

log architecture for storage and 

communication between processors. By doing 

so, it achieves the desired correctness 

guarantees. Kafka Streams, a scalable stream 

processing client library within Apache 

Kafka, utilizes read-process-write cycles to 

capture state updates and outputs as log 

appends, providing a robust and reliable 

solution [13]. 

     In the current era of big data, the primary 

challenge lies in collecting the vast amounts of 

data generated [15]. Apache Kafka, a free and 

open-source distributed streaming 

platform/messaging system, stands out for its 

capability to manage large volumes of 

incoming data streams. It is widely utilized for 

data extraction from diverse and 

heterogeneous sources, owing to its ability to 

ingest expanding data volumes from 

unstructured or semi-structured data sources. 

Renowned organizations like Twitter, 

Walmart, and others extensively use Kafka. 

Apache Kafka’s key features, such as high 

throughput, scalability, fault tolerance, and 

reliability, make it an excellent and preferred 

choice for handling ATM transaction data. 

 

Fig. 1: A typical ANN model

 

     Kafka consists of clusters of multiple 

brokers that store data assigned to different 

Kafka topics. A topic can have multiple 

partitions and be replicated across multiple 

brokers. 

     Data producers write data on different 

Kafka topics. The number of partitions and 

replication factors for a Kafka topic can be 

defined at the time of Kafka topic creation. A 

partition consists of messages in a sequence, 

and new messages are added at the end of the 

partition. Replication of topics across multiple 

brokers prevents data loss in case of a broker 
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failure. Consumers subscribe to a specific 

Kafka topic and fetch messages from it. A 

consumer may belong to a consumer group. A 

consumer can be a database such as HBase 

Cassandra or a real-time consumer such as 

Spark or Storm. 

     Numerous companies across various 

industries have adopted Apache Kafka as the 

fundamental infrastructure for data pipelines, 

streaming analytics, data integration, and 

critical applications. Data in Kafka is 

organized into topics, each of which can have 

multiple partitions. These partitions are 

maintained as immutable sequences of 

records, functioning like logs. Producers can 

continuously add data to partitions, while 

consumers can continuously read from them 

[16]. 

3.2 Apache Spark 

     Big data analytics, crucial in storing, 

processing, and analyzing massive datasets, 

has become indispensable [15]. With the 

emergence of distributed computing 

frameworks like Spark, efficient solutions to 

explore vast amounts of data are now 

available. Spark’s popularity has surged due 

to its accessible application programming 

interface (API) and exceptional performance, 

surpassing the MapReduce framework. The 

default system parameters in Spark make it 

effortless for system administrators to deploy 

their applications and measure specific cluster 

performance using factory-set parameters 

[12].  

     Apache Spark, a widely adopted open-

source framework, is renowned for its ability 

to handle extensive data processing tasks. It 

offers a programming interface that facilitates 

cluster programming with implicit data 

parallelism and ensures fault tolerance. 

     The process of training machine learning 

models faces challenges that cause 

slowdowns, such as the dataset size and the 

optimization parameters needed to create the 

best-fitting model. To address these issues, 

researchers have sought a more suitable 

approach. One potential solution is employing 

the Apache Spark tool, a high-speed cluster 

computing framework and open-source 

distributed programming tool for clusters. 

Additionally, Spark performs operations in 

memory, further enhancing its efficiency [17]. 

     Spark provides Java, Scala, Python, and R 

APIs and an optimized engine that executes 

general execution graphs. Spark excels in 

iterative computations, making it an ideal 

choice for creating large-scale machine-

learning applications. 

     In the Apache Spark architecture, when the 

Driver Program executes, it calls the actual 

application program and establishes a 

SparkContext containing all the fundamental 

functions. Alongside the SparkContext, the 

Spark Driver comprises other essential 

components such as the DAG Scheduler, Task 

Scheduler, Backend Scheduler, and Block 

Manager. These components combine to 

convert user-written code into jobs executed 

on the cluster. 

     The Cluster Manager is responsible for 

managing the execution of various jobs within 

the cluster. The Spark Driver works hand in 

hand with the Cluster Manager to oversee the 

execution of different jobs. The Cluster 

Manager allocates resources for the job, 

divides them into smaller tasks, and 

distributes them to worker nodes. The Spark 

Driver takes charge of controlling this 

execution process. 

     Multiple worker nodes can be employed to 

process an RDD created in SparkContext, and 

the results can also be cached for optimization. 

The Spark Context receives task information 

from the Cluster Manager and enqueues it on 

worker nodes. The executor manages the 

execution of these tasks. The lifespan of 

executors aligns with that of the Spark 

Application, and if desired, increasing the 

number of workers can enhance the system’s 

performance, allowing for the division of jobs 
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into more manageable parts. 

Fig. 2: Apache Spark Internal Architecture 

     There are several platforms and engines 

available for transforming the data, for 

example, Hadoop MapReduce, Apache Flink, 

and Apache Storm, but the spark is preferred 

for our ETL pipeline considering the 

following reasons: 

     Scalability: Spark is designed to handle 

extensive scale data processing, making it one 

of the best choices for data transformation. 

Distributing computation across a cluster of 

machines enables parallel processing and 

effective utilization of available resources. 

     Speed: Spark is renowned for its 

exceptional processing speed. It achieves this 

by conducting computations in memory, 

minimizing disk input/output (I/O), and 

considerably expediting data transformation 

operations. Moreover, Spark’s capability to 

store intermediate data in memory through 

caching further amplifies its performance, 

resulting in accelerated data transformation 

tasks. 

     Fault Tolerance: Spark incorporates 

inherent fault tolerance mechanisms, 

providing a robust system for handling 

failures. It can automatically recover from 

errors, guaranteeing uninterrupted progress in 

the data transformation process. 

     Flexibility: Spark offers a wide range of 

programming interfaces, including Java, 

Scala, Python, and R. Moreover, It also boasts 

a comprehensive ecosystem comprising 

numerous libraries and extensions. 

3.3 Random Walk Model 

     Blockchain technologies have become 

prominent in recent years, with many experts 

citing the technology’s potential applications 

regarding different aspects of any industry, 

market, agency, or governmental 

organization. In the brief history of 

blockchain, many achievements have been 

made regarding how blockchain can be 

utilized and the impacts it might have on 

several industries.[18]. 

     Blockchain is recognized for its 

decentralized, autonomous, and immutable 

characteristics, providing various features 

such as verification, fault tolerance, 

anonymity, auditability, and transparency 

[14]. Blockchain is a distributed and 

decentralized ledger that records transactions 

across a network of computers, ensuring 

immutability. It provides essential features 

such as authentication, integrity, traceability, 

privacy, confidentiality, and fault tolerance.  

     There are three main types of blockchains: 

     Permissionless or Public blockchains: 

These allow anyone to join the network and 

participate in managing the blockchain. 

     Permissioned or Private blockchains: 

Only invited individuals from a single 

organization can join the network and take 

part in managing the blockchain. 

     Consortium blockchains: Invited 

members from various organizations can join 

and participate in the consortium blockchain’s 

management. 

     Here are some key aspects that contribute 

to blockchain’s security and immutability: 
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1.      Decentralization: To collectively 

maintain and validate the database, 

blockchain operates on a decentralized 

network of nodes. These nodes working 

in peer-to-peer architecture form a 

blockchain network. This decentralized 

system removes the need for a central 

authority, making it resistant to single 

points of failure and reducing the risk of 

unauthorized tampering or data 

manipulation. 

                                       

2.      Distributed Ledger: The blockchain 

functions as a distributed ledger, 

chronologically recording all transactions 

or data entries. Within the network, each 

node retains a copy of the complete 

blockchain, and the addition of 

transactions to the ledger follows a 

consensus mechanism like proof-of-work 

or proof-of-stake. This decentralized 

approach guarantees the existence of 

multiple copies of the ledger, rendering it 

challenging for attackers to alter the data 

without consensus from the majority of 

nodes. 

 

3.      Cryptographic Hash Functions: 

Blockchain employs cryptographic hash 

functions to safeguard the data’s 

integrity. Every block within the 

blockchain contains a unique hash value 

generated based on its data content. If any 

alteration is made to the data within a 

block, it will lead to a distinct hash value, 

making any tampering easily detectable. 

This crucial characteristic guarantees that 

once a block is added to the blockchain, it 

becomes practically impossible to modify 

or erase the data without being noticed. 

 

4.      Immutable Records: Once data is 

added to the blockchain, it becomes 

virtually immutable. The decentralized 

and distributed nature of the blockchain, 

coupled with the cryptographic hash 

functions, ensures that historical 

transactions or data entries resist 

modification. This immutability provides 

high trust and transparency, as it becomes 

difficult to dispute or alter past records. 

 

5.      Consensus Mechanism: Blockchain 

networks rely on consensus mechanisms 

to agree on the validity of transactions or 

data entries. Consensus algorithms ensure 

that all nodes in the network reach an 

agreement on the order and validity of 

transactions, preventing fraudulent or 

conflicting entries. This consensus 

process strengthens the security of the 

blockchain by requiring a majority of 

nodes to validate and agree on the data 

being added. 

 

6.      Encryption: Blockchain can integrate 

encryption techniques to safeguard 

sensitive data. Encryption guarantees that 

the data stored on the blockchain remains 

confidential and can only be accessed by 

authorized parties possessing the correct 

decryption keys. Through data 

encryption, blockchain adds an extra 

layer of security, particularly for sensitive 

information like personal or financial 

data. 

 

     By combining these elements, blockchain 

technology provides a secure and immutable 

database resistant to tampering, fraud, and 

unauthorized access. Its decentralized nature, 

cryptographic principles, and consensus 

mechanisms create a trustless environment 

where participants can confidently interact 

and rely on the integrity and security of the 

stored data. 

 

4. Proposed Solution 

4.1   Data Collection and Ingestion  

     Apache Spark is used for data collection 

and ingestion. The whole process is described 

in this section. 

4.1.1 Overview of ATM transaction data 

     Financial transactions conducted at ATMs 

provide valuable information about customer 
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behavior, banking patterns, and cash flow. 

Here is an overview of the typical information 

captured during ATM transactions: 

     Date and Time: The timestamp indicates 

when the transaction took place. It includes 

the date, time, and time zone. 

     Transaction Type: Specifies the nature of 

the transaction, such as cash withdrawal, cash 

deposit, funds transfer, or other services. 

     ATM Location: Records the physical 

location of the ATM, identified by an address 

or geographic coordinates (latitude and 

longitude). 

     Card Information: Encrypted details 

related to the card used for the transaction, 

including the card number and expiration date. 

Note that sensitive cardholder data like the 

cardholder’s name, PIN, or CVV (Card 

Verification Value) is typically not stored in 

the transaction data. 

     Transaction Amount: Indicates the 

monetary value involved in the transaction. 

     Account Information: Identifies the bank 

account associated with the transaction, 

usually by an account number or an encrypted 

identifier. 

     Transaction Result: Specifies the 

transaction’s outcome, whether it was 

successful, declined, canceled, or encountered 

an error. 

     ATM Terminal ID: A unique identifier 

assigned to each physical ATM terminal, 

distinguishing it from other ATMs within a 

network. 

    Currency: Denotes the currency in which 

the transaction was conducted, such as USD 

(United States Dollar), EUR (Euro), GBP 

(British Pound), etc. 

    Additional Messages: Records any 

additional message utilized during the 

transaction, like language selection, receipt 

printing, or screen customization. 

     The dataset used in this paper can be 

accessed at 

https://www.kaggle.com/datasets/sparnord/da

nish-atm-transactions. 

4.1.2 Integration of Kafka for ATM  

Transaction Data Ingestion 

     We are using Kafka to collect ATM 

transaction data as it can handle high-

throughput data streams, provide fault 

tolerance, and enable real-time processing. 

Collecting ATM transaction data from 

different ATMs involves setting up a Kafka 

infrastructure to receive, store, and process the 

data. Here’s an explanation of the process: 

     ATMs are the source here. An ATM does 

not have its own dedicated Kafka producer. 

Instead, a middleware layer containing several 

Kafka producers is usually responsible for 

collecting the transaction data from multiple 

ATMs. This system acts as a producer and 

forwards the data to appropriate Kafka topics. 

      A Kafka topic is explicitly created for 

storing ATM transaction data. The 

middleware produces the collected ATM data 

for this Kafka topic. A Kafka topic is a 

channel where ATM transaction data is 

organized and published. Think of it as a 

virtual container or a labeled stream of data. 

     After the data is produced into the Kafka 

topic, the Kafka cluster provides the 

infrastructure to handle the data flow. A Kafka 

cluster consists of multiple Kafka brokers that 

form a distributed system. Brokers are 

individual server instances that include the 

distributed messaging system. Each broker is 

responsible for handling a portion of the data, 

including storing and replicating the data 

across the cluster. It facilitates the streaming 

of data in real-time. As new data arrives, it is 

immediately made available to consumers 

subscribed to the corresponding Kafka topic, 

enabling real-time processing, analytics, and 

integration with downstream systems. A 

https://www.kaggle.com/datasets/sparnord/danish-atm-transactions
https://www.kaggle.com/datasets/sparnord/danish-atm-transactions
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Kafka consumer refers to an application or 

service subscribing to a Kafka topic and 

consuming the transaction message published 

to that topic for further processing. The 

following figure explains the process:

Fig. 3: Integration of Kafka for ATM transaction data ingestion 

4.2   Data Transformation and Analysis 

     Various transformations can be applied 

depending on the dataset and specific use case. 

These transformations include Filtering, 

Mapping, Aggregation, Data Cleansing, and 

Machine Learning Transformations. 

      In our particular use case, the initial step 

involves mapping the dataset onto a specific 

schema, eliminating non-essential attributes. 

Subsequently, Data Cleansing is executed to 

address missing values and duplicates. Lastly, 

the Data Frame is aggregated based on the 

transaction month. The desired output 

comprises grouped rows of data that have 

been cleansed, mapped, and organized 

according to the month of the transactions. 

                      

Fig. 4: Data Transforming using Apache Spark 
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The depicted diagram illustrates the workflow 

of the ETL (Extract, Transform, Load) 

process. Initially, the ATM Transaction Data 

is extracted and forwarded to Kafka topics. 

Following extraction, the data is transformed 

using Apache Spark. This transformation 

phase encompasses Mapping, Cleansing, and 

Aggregating the data frame based explicitly 

on the month attribute. After the 

transformation step, the next stage is loading, 

during which the transformed data is loaded 

into a database, depending on the ETL 

configuration in use. 

4.3 Data Storage and Security 

     Implementing blockchain for ATM 

transaction data storage can provide security, 

transparency, and immutability to the 

transaction records. Multiple blockchain 

platforms can be used depending on the 

requirement. The most popular platforms 

include Ethereum, Hyperledger Fabric, and 

Corda. The choice of platform depends on the 

scalability, consensus mechanism, smart 

contract, and community support. 

Using a platform like Ethereum, you can 

create smart contracts to define the rules and 

logic for processing transactions. Smart 

contracts are self-executing contracts with 

predefined conditions, enabling automated 

and trustworthy processing. Define the 

necessary functions and events to handle the 

ATM transaction data. Define the data 

structure through which information should be 

stored on the blockchain. 

struct Transaction {  

       uint256 dateAndTime;  

       string transactionType;  

       string atmLocation;  

       CardInformation cardInfo;  

       uint256 transactionAmount;  

       AccountInformation 

accountInfo;  

       string transactionResult;  

       string atmTerminalID;  

       string currency;  

       string additionalMessages;  

     Write a smart contract that defines the 

functions and events to handle ATM 

transactions. Smart contracts are crucial in 

handling ATM transaction data in a 

blockchain-based system. Smart contracts are 

the system’s backbone, ensuring ATM 

transaction data’s accuracy, transparency, 

security, and trustworthiness in a blockchain-

based environment. They provide a 

decentralized and automated approach to 

processing and storing transaction data, 

eliminating the need for intermediaries and 

enhancing the efficiency and reliability of the 

overall ATM transaction process. 

Input: Kafka topic (string) 

Processing: 

contract KafkaDataLoader { 

    mapping(string => bool) private 

processedRecords; 

    event RecordLoaded(string recordId);     

    function loadFromKafka(string memory 

kafkaTopic) public { 

        KafkaConsumer consumer = 

createConsumer();  

        consumer.subscribe(kafkaTopic);          

        while (true) { 

            Message message = 

consumer.consume();  

            string memory recordId = 

extractRecordId(message); 

            string memory recordData = 

extractRecordData(message);             

            if (!processedRecords[recordId]) { 

                bool isValid = 

validateRecordData(recordData); 

                if (isValid) { 
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                    storeOnBlockchain(recordId, 

recordData); 

                    processedRecords[recordId] = 

true; 

                    emit RecordLoaded(recordId); 

                }    }     }    }     } 

     Output: Records loaded on the Ethereum 

blockchain, with the event RecordLoaded 

containing the recordId (string). 

     This represents a smart contract called 

“KafkaDataLoader” that facilitates loading 

data from a Kafka topic into the blockchain. 

The contract defines a mapping to keep track 

of processed records and emits an event when 

a record is successfully loaded. The 

“loadFromKafka” function creates a Kafka 

consumer, subscribes to the specified topic, 

and continuously consumes messages. It 

extracts the record ID and data from each 

message, validates the data, and stores it on 

the blockchain if it is deemed valid. The 

contract ensures that each record is processed 

only once by checking the mapping. Overall, 

this smart contract enables the integration of 

Kafka data with the blockchain, providing 

transparency, immutability, and audibility to 

the loaded data. 

     In the next step, we will submit 

transactions to the blockchain. Ethereum 

SDK, such as Web3.js, connects with the 

deployed contract. The “storeOnBlockchain” 

function is responsible for submitting the 

transactions to the Ethereum blockchain. 

Monitor the Ethereum network to ensure the 

transactions are successfully added to the 

blockchain. Listen for the NewTransaction 

event emitted by the smart contract to track 

new transactions.  

4.4 Overall Architecture of Pipeline 

Using Kafka to collect ATM transaction data 

enables high-throughput data streams, fault 

tolerance, and real-time processing. ATM data 

is collected by a middleware layer with Kafka 

producers, forwarded to dedicated Kafka 

topics, and consumed by applications for 

processing and analytics. ETL process applies 

filtering, mapping, aggregation, and data 

cleansing. Use cases involve mapping to a 

schema, data cleansing for missing values and 

duplicates, and aggregation. 

     Based on transaction months. Blockchain 

implementation for ATM transaction data 

offers security, transparency, and 

immutability. Smart contracts play a vital role, 

defining functions and events to process and 

store transaction data, ensuring accuracy, 

trustworthiness, and decentralization. 

     The following diagram describes the 

architecture of the pipeline proposed in this 

paper: 

 

 

 

Fig. 5: Overall Architecture of Pipeline 
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5. Results and Discussion 

5.1 Analysis of ETL Pipeline 

Performance 

     The following section presents the 

performance evaluation of the ETL Pipeline. 

The experiment aimed to optimize the 

performance of the ETL Pipeline while 

considering the security factor. 

     Firstly, the goal was to improve the 

performance of the extraction phase. This 

phase includes sending the 24M transaction 

records data to Kafka topics. With the default 

configuration of Kafka, topics with one 

partition, and No Optimization method, the 

execution time is almost 6 minutes. Now, the 

goal is to optimize the methods involved so 

that the execution time can be reduced. 

     The first optimization method undertaken 

was to change the default configuration for 

Kafka. Here are the changes made to the 

Kafka configuration: 

● Acks was set to 1, meaning the producer 

will only wait for the acknowledgment 

from the leader broker. 

● Batch size was set to 32kb so that more 

data to a broker can be sent at a time. 

 

 

● Linger. ms, the delay before sending a 

new data packet was set to 5ms so that 

producers have enough time to store data 

in the batch before sending. 

● Topics are created with three partitions 

rather than one by default. 

After all these configuration changes, 
execution time was recorded to be almost 4.6 
minutes. Then, the most critical optimization 
step suggested in [2] is the process of 
Partitioning and Parallelization. To achieve the 
following, the data source was partitioned into 
multiple sources, and multiple producers sent 
the partitioned data to Kafka topics. But only 
Partitioning wasn’t enough for a good result as 
the execution time was decreased to almost 3.5 
minutes. The last method to optimize this 
phase was Parallelization, which is achieved 
using multi- processing. Processes that send 
data to Kafka-topics were run in parallel, and 
the whole data was sent to Kafka-topics in 
around 2.5 minutes, which appears suitable for 
sending 24 million rows of data. 

     The next phase is the transformation and 

loading phase. This phase includes reading 

from Kafka topics, mapping, cleaning, 

aggregating, and loading the transformed data 

into a database. The non-optimized 

transformation phase took around 20 minutes, 

which is unacceptable. 

     For better performance, the main data 

frame containing the whole data was 

partitioned into multiple sub-data frames. 

Now, transformation methods like filtering 

based on month cleaning were applied on sub-

data frames instead of the main data frame, 

resulting in a sufficient decrease in execution 

time. Each sub-data frame was executed in 

parallel to optimize the complete processes. 
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This results in a final execution time of almost 

7 minutes. 

     Now, to compare how much optimization 

we have achieved, the overall execution time 

of the whole ETL Process of non-optimized 

and optimized ETL Pipeline is shown in the 

figure: 

5.2 Data Security Evaluation Using 

Blockchain 

     Data security is critical when utilizing 

blockchain technology to store ATM 

transaction data. Here’s an evaluation of the 

security measures mentioned in the provided 

information: 

1.      Access Control: Implementing roles 

and permissions helps ensure that only 

authorized individuals can perform 

specific actions. By defining roles for 

ATM operators, bank administrators, and 

auditors, access to sensitive operations 

can be restricted. Using modifiers and 

require statements in the smart contract 

enforces these permissions effectively. 

2.      Encryption: Encrypting sensitive 

data fields before storing them on the 

blockchain adds an extra layer of 

protection. Utilizing encryption 

algorithms like AES or RSA helps ensure 

the confidentiality of card information, 

account details, and transaction amounts. 

Encrypting the data before storing it on 

the blockchain makes it more difficult for 

unauthorized parties to access sensitive 

information. 

3.      Event Logging: Emitting events for 

critical operations and storing event logs 

off-chain in a secure and centralized 

logging system aids in auditing and 

analysis. By keeping track of successful 

transactions, account balance updates, 

and access control changes, it becomes 

easier to monitor and review activities for 

any potential security breaches. 

4.      Secure Data Handling: Avoiding the 

storage of sensitive information such as 

card PINs or CVV numbers on the 

blockchain is crucial. These details 

should be handled securely outside the 

blockchain, with the blockchain storing 

only the necessary transaction metadata. 

Adhering to secure coding practices helps 

mitigate common vulnerabilities and 

ensures the integrity of the stored data. 

5.      Code Auditing and Testing: 

Conducting thorough code reviews and 

security audits is essential to identify and 

address potential vulnerabilities. By 

testing the smart contract extensively, 
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including simulated attack scenarios, 

weaknesses can be discovered and 

rectified. Regular audits and testing help 

maintain a robust and secure smart 

contract for handling ATM transaction 

data. 

6.      Contract Upgradability: 

Implementing a mechanism for contract 

upgradability is essential for addressing 

security patches or adding enhancements. 

However, caution must be exercised to 

ensure that contract upgrades do not 

compromise the integrity of stored 

transaction data or introduce new security 

risks. Best practices should be followed to 

maintain the security of the data during 

the upgrade process. 

7.      External Dependency Security: 

Using verified and audited libraries for 

cryptographic operations and other 

external dependencies is crucial. Relying 

on trusted code reduces the risk of 

introducing vulnerabilities or 

compromising data security. Care should 

be taken to thoroughly evaluate and vet 

any external dependencies in the 

blockchain solution. 

8. Regular Updates and Patching: Staying 

informed about security updates and 

patches for the blockchain platform and 

smart contract frameworks is necessary. 

Promptly applying these updates ensures 

that known vulnerabilities are addressed, 

and the latest security measures are in 

place. Regular updates and patching are 

vital for maintaining a secure 

environment for ATM transaction data. 

9.      Third-Party Audits: Engaging 

independent security auditors helps 

ensure a comprehensive evaluation of the 

smart contract handling ATM transaction 

data. Third-party auditors can identify 

potential security weaknesses, validate 

the effectiveness of implemented security 

measures, and provide recommendations 

for improvement. These audits offer an 

objective perspective on the security of 

the blockchain solution. 

     By implementing these security measures 

and regularly evaluating the data security 

aspects, ATM transaction data stored on the 

blockchain can benefit from increased 

integrity and confidentiality. 

5.3 Data Security Evaluation Using 

Blockchain 

     The following table highlights the 

differences between blockchain and 

traditional databases: 

 Block Chain Traditional Databases  

Immutable and 

Tamper-Resistant 

Blockchain databases store data in 

linked blocks with cryptographic 

hashes, ensuring highly secure and 

tamper-resistant storage. 

Traditional databases may 

rely on centralized servers or 

administrators, which can be 

vulnerable to unauthorized 

modifications. 

Decentralization Blockchain databases’ decentralized 

nature, distributing copies across a 

node network, mitigates single points 

of failure and centralized attack 

targets. 

On the other hand, 

traditional databases often 

have a central server, which 

can be a potential weakness. 
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Consensus 

Mechanisms 

Consensus mechanisms like proof-

of-work or proof-of-stake in 

blockchain databases validate and 

require agreement among most 

network participants before adding 

transactions to the chain. 

In traditional databases, 

transactions are often 

validated and controlled by a 

central authority, which may 

be more susceptible to 

corruption or hacking 

attempts. 

Encryption and 

Security 

Measures 

Due to their distributed ledger nature, 

blockchain databases employ robust 

encryption for securing transactions 

and identities. 

Traditional databases can 

implement encryption 

techniques to protect data. 

Privacy and 

Confidentiality 

While blockchain offers transparency 

and immutability, it introduces 

privacy concerns as certain data 

might be visible to all participants 

based on the design. 

Traditional databases, on the 

other hand, can implement 

access controls and 

encryption to restrict access 

to sensitive information. 

 

Performance and 

Scalability 

Blockchain databases may need help 

with scalability and performance due 

to slower transactions and limited 

scalability tied to consensus 

mechanisms and distributed 

structure. 

Traditional databases, 

especially those designed for 

high-performance 

environments, can often 

handle larger volumes of 

data and provide faster 

response times. 

6. Conclusion 

     ETL processes are known to be complex 

and resource-consuming. With the 

advancement of financial technology, the 

security and integrity of customer data have 

emerged as a big concern. So, there is a 

definite need to focus on the security aspects 

of a pipeline. However, the enhancement of 

pipeline security comes with a compromise on 

pipeline performance. To achieve a better 

level of security, we need to increase pipeline 

performance to maintain an optimum balance 

between security and performance.  

     Blockchain is known for its secure nature. 

In this paper, we propose that the ATM 

transaction data should be stored in a 

blockchain in the load phase of the ETL 

pipeline. This ensures the security and 

integrity of crucial financial data as 

Blockchain provides immutability, 

transparency, traceability, decentralization, 

reliability, privacy, confidentiality, and fault 

tolerance. Blockchain offers 

encryption/decryption, cryptography, digital 

signature and timestamp, and hash trees to 

ensure security. Compromising on security is 

synonymous with compromising on customer 

trust. However, blockchain has the 

disadvantage of low throughput, making the 

pipeline slow. So, we tried to optimize the 

pipeline performance using parallelization and 

partitioning in the extraction phase. Before 

optimization, for 24 million transactions, it 

took 6 min to send data to Kafka topics. After 

optimization, it took 2.5 minutes. In this way, 

we enhanced the pipeline security without 

affecting performance. 
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