

 Vol. 7, No. 1 | January – June 2024

SJET | P-ISSN: 2616-7069 |E-ISSN: 2617-3115 | Vol. 7 No. 1 January – June 2024

37

Machine Learning-Based Compiler Optimization

Techniques

Salwa Iqbal1, Sheikh Kashif Raffat1

Abstract:
Since the last few decades, the need for machine learning-based compilation approaches has

become indispensable for every aspect of growing technology, especially artificial intelligence

and network computing areas. These approaches improve performance and result quality, while

also addressing compiler optimization issues such as optimization selection and phase ordering.

It has evolved from a relatively obscure research area into a mainstream movement. The study

of current compiler optimization techniques leads to the discovery of the best heuristic

parameters to tune each optimization tactic using machine learning. In this research paper, we

have highlighted the terms machine learning and compiler, the relationship between compiler

optimization and machine learning, and the identity of the concepts of models, training, and

approaches.

Keywords: Compiler, Machine learning, Compiler Optimization

I. INTRODUCTION

The function of the compiler is to translate

human-written programming scripts into a

machine (binary) structure that is

understandable by the computer hardware.

Compilers perform two main tasks: translation

and optimization. Initially, all the compilers

must execute and convert the scripts into

binary language. After translation, the second

task is to search out the best and most efficient

conversion that is possible. Most research and

engineering practices aim to achieve the

second performance goal. Machine learning,

which is a branch of artificial intelligence

(AI), works like this: it predicts the output

from the data and then continues to optimize

the solution by learning. In simpler terms, we

could describe it as a process similar to

interpolation. The area of optimization closely

ties into this ability to predict using prior

1Department of Computer Science, Federal Urdu university of Arts, Sciences and Technology,

Karachi, Pakistan

Corresponding Author: salwa.iqbal@fuuast.edu.pk

information to find the information point with

the simplest outcome.

Machine Learning

Machine learning (ML) and deep learning

play the main role not only in our daily lives

but also in the revolution of industries,

organizations, and computer systems. The

application of machine learning approaches in

different fields of science has been a dream of

many people for decades and has become a

reality in the modern era [1]. Since 1950,

researchers have been studying this subject,

emphasizing the importance of correction and

the need for caution. Machine learning is an

area of artificial intelligence that aims to

predict and detect patterns and learn from a

vast collection of data. It's a dynamic field,

looking at topics as diverse as galaxy

classification and forecasting elections based

on Twitter feeds.

Salwa Iqbal(et al.), Machine Learning Based Compiler Optimization Technique (pp. 37-47)

SJET | P-ISSN: 2616-7069 |E-ISSN: 2617-3115 | Vol. 7 No. 1 January – June 2024

38

Compiler and Optimization Techniques
Since the 1800s, researchers have been
studying machine learning-based
optimization. Despite the long journey of this
union ship, these two subjects have not filled
the software gap independently. There are two
reasons for this gap: one is boosting hardware
performance year by year, and the other is that
computer architecture advances quickly. Each
generational era has new foibles that compiler
writers tried to catch, but they were difficult to
handle manually. The automatic property of
machine learning has overcome this problem.
We replaced compiler experts who developed
heuristics to optimize the code with a machine
learning approach, which makes the machine
run faster.

Essentially, the compiler functions as

software that translates high-level languages

into machine language. As we all know,

computers or computing machines can only

comprehend assembly language or machine

language, while we typically communicate in

our formal language, which is similar to high-

level languages. Typically, we encounter

challenges in comprehending machine

language or assembly language, while

machines can only identify these languages.

Therefore, a compiler is being introduced to

handle these situations in which both humans

and machines work in their own language, and

the compiler is working as a translator

between humans and machines. Simply put,

humans write their code in high-level

language, and the compiler converts it into

assembly language. Optimization in the

compiler is introduced because, when the

compiler was being introduced, it took lots of

time and mostly missed out on some errors

during compilation. That's why our desired

program didn't work properly, and we didn't

get our desired results. Compiler optimization

primarily aims to enhance the compiler's

performance to the maximum extent possible.

Grace Murray Hopper was the first person to

make a compiler A-0 for UNIVAC in 1951-2.

John Backus was the second person to lead a

team that developed the FORTRAN compiler.

The first programming language that uses a

compiler is COBOL. The 1960s saw the

development of a bootstrapping LISP

compiler for the first time. In the 1960s and

1970s, parsing and scanning studies provided

a proper solution. Compiling programming

languages is one of the most important

components for converting one language into

another [2].

The compiler optimizes an executable

computer program by minimizing and

maximizing its attributes [3]. The compiler's

two main goals are to reduce the time it takes

to execute a program and the amount of

memory it occupies. The compilation of any

program is composed of six phases, namely,

lexical analysis, syntax analysis, semantic

analysis, intermediate code generation, code

optimization, and target code generation.

However, with improvements in computer

system architecture, the need for improving

code size and instruction execution speed has

also increased. The compiler's optimization

phase determines a program's execution time

and memory.

The main goal of the compiler is to

improve the target code, reduce processing

time, and consume less space. In today's era,

compilers come equipped with a variety of

optimization techniques to enhance their

efficiency. If the compiler applies all of the

techniques at once, the program's execution

and performance will suffer. To have a more

significant impact, all they need is an accurate

choice of optimization technique. Compilers

are responsible for improving the target code

without changing its output or adding any bad

effects. The optimal sequence for every

program is different depending on the source

code and instructions. Therefore, in the

contemporary era, individuals are adopting

more refined and structured compiler analysis

and optimization methods, such as advanced

data flow analysis, leaf function optimization,

and cross-linking optimizations, among

others, to meet the latest trends and produce

superior target code for hardware automation

and the newest machines, respectively.

Salwa Iqbal(et al.), Machine Learning Based Compiler Optimization Technique (pp. 37-47)

SJET | P-ISSN: 2616-7069 |E-ISSN: 2617-3115 | Vol. 7 No. 1 January – June 2024

39

There are several techniques used for the

optimization of compilers.

Data-flow analysis

It is a technique for gathering information

concerning the calculated values of variables

at different points in a computer program. The

control-flow graph (CFG), a graphical view of

a program, resolves the part of assigning

values that might fluctuate [5].

Code Motion

Loops play an important role in compiler

optimization. We can enhance the running

time of a program by decreasing the number

of instructions in an inner loop, regardless of

whether we make more increments in the

quantity of code outside that loop, because

programs are more likely to spend most of

their time in inner loops. Code motion is a

major moderation that lessens the amount of

code in a loop. This moderation evaluates an

expression that produces the same output

independent of the loop's execution time [6].

Leaf Function Optimization

Leaf functions do not execute code

directly within a program. They would rather

create these functions to achieve code

reduction. There is no entry or exit code in the

leaf function, which helps greatly in reducing

the code size [7]. During the leaf optimization

process, we place register constraints to

control function calls, thereby reducing the

code size. Another benefit of leaf function

optimization is that it allows us to further

optimize the code because the parent

function's context includes the body of the

inline function.

Reverse-in-lining (procedural abstraction)

Procedural abstraction is another name for

reverse-in-line technology. It falls into the

category of the newest techniques in compiler

optimization, which focuses on reducing a

program's code size [8]. The reverse-in-line

technique achieves its goal by replacing

function calls with code patterns that are

present throughout the program.

Cross-linking Optimization

Search engine optimization generally uses

cross-linking optimization [9]. However,

nowadays, compiler optimization also uses

this method. Functions containing switch

statements with similar tail codes can use this

method both locally and globally [10]. Since

the major goal of cross-linking is code

reduction, current computer architecture also

focuses on it. A cross-linking optimization

algorithm factors the tail codes detected in the

switch statement to reduce the actual size of

the code.

Reduction in Strength

Reduction in strength is the transformation

of replacing an expensive operation (like

multiplication) with a cheaper one (like

addition). However, the induction variable not

only enables us to perform the strength

reduction, but it also frequently enables us to

terminate all the groups of the induction

variable, except for the one whose values

remain in lockstep as we repeat the loop [11].

This optimization technique may lead the

program to produce inaccurate results. It may

replace the operators, which are important to

produce effective and accurate results.

Moreover, the debugger may find it more

challenging to debug a program due to its

limited capacity to handle a greater number of

operators.

Loop Unrolling

In region-based scheduling, the boundary

of loop iteration is one of the major barriers to

code motion. We cannot overlap the operation

from one iteration to another. One of the most

simple and productive techniques for solving

this problem is to unroll the loop multiple

times before code scheduling. In this type of

optimization, a compiler may become slower

as unrolling the loop again and again after a

short span of time may take it longer to

compile, and loop-rolling optimization may

become expensive to perform [12].

Multiple Memory Access Allocation

One of the most recent optimization
methods, Multiple Memory Access Allocation
(MMAA), stores instructions in multiple

Salwa Iqbal(et al.), Machine Learning Based Compiler Optimization Technique (pp. 37-47)

SJET | P-ISSN: 2616-7069 |E-ISSN: 2617-3115 | Vol. 7 No. 1 January – June 2024

40

registers. Microprocessors use this process to
reduce the code size [13].

Combined Code Motion and Register

Allocation

This optimization technique is a

combination of code motion and register

allocation. Code motion aims to retain

infrequently used instructions within basic

blocks. In these blocks or regions, instruction

scheduling sets up instructions so that they can

do parallel computations on their own [14].

The goal of Register Allocation and Code

Motion (RACM) is to reduce the load on

registers by applying the code motion

technique, i.e., moving the code, then live-

range splitting, and finally spilling.

II. MACHINE LEARNING BASED

COMPILER

It is the responsibility of programmers and

compilers to understand the most effective

heuristics and optimization techniques for

coding, with the goal of enhancing

performance, reducing power consumption,

and minimizing errors. Compiler modeling

can use machine learning features to make

decisions for a specific program. This

integrated paradigm depends on two stages:

learning and deployment. The learning phase

involves training the model with historical

data, followed by its application to a

previously unseen new program [15].

#ins
t

#loa

dins
#branch

#cache

For(…)

{

}

(a) Stage1: Feature engineering

Features of

training

program

(b) Stage2: Learning model

Training
program

Supervised

machine

learner

Mode

l

Mode

l

New

program

Predictio

n

 (c) Stage3: Deployment

Fig.1. Supervised machine learning based compiler

Salwa Iqbal(et al.), Machine Learning Based Compiler Optimization Technique (pp. 37-47)

SJET | P-ISSN: 2616-7069 |E-ISSN: 2617-3115 | Vol. 7 No. 1 January – June 2024

41

The processes that machine learning uses to

make a compiler more powerful are shown in

Fig. 1, including feature engineering, learning

a model, and deployment, which are described

in the following sub-sections.

Stage 1: Feature Engineering

Being able to describe programs before

learning them is helpful. AI relies on a variety

of quantifiable properties or features; see Fig.

1(a). Various highlights can be utilized, which

incorporate the static information structures

from the source code or the compiler's

halfway portrayal, dynamic profiling data

acquired through runtime profiling, or a blend

of both. The cycle of highlight determination

and tuning is referred to as highlight

designing. This cycle may necessitate

multiple iterations to identify a variety of

high-quality highlights for a specific machine-

learning model.

Stage2: Model Learning:

The next step is to train a model using the

training data. This process can be considered

in Fig. 1(b). Unlike other applications of

machine learning, we learn and generate the

training data using existing data. Typically,

the compiler developer will select training

programs from the application area. The

compiler developer extracts certain feature

values from previous programs, considering

optimization preferences and calculations.

The developer uses these values to train an

algorithm that builds a model automatically.

This model predicts new future values and sets

of features for optimal options.

Stage3: Deployment

Finally, as shown in Fig. 1 (c), the

compiler embeds the learning model to predict

the best choice for a new and innovative

program.

III. OPTIMIZED COMPILATION

APPROACHES (METHODOLOGY)

The basic challenge of the compiler

optimization process is choosing the correct

code transformation. These resources

effectively evaluate the quality and potential

complexity of the selected option. A native

approach is to perform transformational

analysis and optimize performance for the

program-side view metric. This search-based

cycling optimal approach is known as iterative

compilation [16–17] or auto-tuning.

Researchers have developed numerous

techniques to reduce the expense of searching

through an enormous amount of space.

Generally, the overhead is reasonable if the

program in question is intended for frequent

use, such as in a deeply implanted device. Its

principal impediment remains. It only

achieves a reasonable improvement for a

single program and does not culminate in a

compiler heuristic.

We have two fundamental methodologies

that allow us to tackle the issue of

optimization scalability by selecting compiler

alternatives that work across programs. The

primary process aims to develop a cost

capacity that can serve as an intermediary for

evaluating the characteristics of a predicted

option, eliminating the need for extensive

profiling. The next step is to legitimately

predict the best-performing choice.

A. A Cost Function Implementation

A large portion of compiler heuristics

relies on cost work that estimates the nature of

a compiler. Quality measurement can be

execution time, code size, or energy

utilization, depending on the improvement

objective. Using a cost function, a compiler

can assess the scope of potential alternatives

and pick the best one without expecting to

incorporate and profile the program with

every choice.

(a) The Problem of Handcrafted Heuristics

Typically, creating a compiler cost

function involves physical processes. For

instance, a heuristic for capacity inlining

incorporates several crucial measurements,

including the number of directions for the in

lined objective capacity, the size of the cell

and stack after inlining, and a comparison of

the results against a predetermined limit to

Salwa Iqbal(et al.), Machine Learning Based Compiler Optimization Technique (pp. 37-47)

SJET | P-ISSN: 2616-7069 |E-ISSN: 2617-3115 | Vol. 7 No. 1 January – June 2024

42

determine the feasibility of inlining a capacity

[18].

(b) Cost Functions for Energy Consumption

In addition, the cost function for energy

consumption and performance is the main

investigation of the cost function that finds

different ways to learn the energy models for

the architectural design of hardware and

software optimization [19–20]. Most of the

earlier work on power displaying relied on

regression-based methodologies, as real

values continue to measure energy reading

power.

B. Predict Unswervingly the Best Option

Therefore, while function costing is very

useful for evaluating a compiler's quality, the

optimal search options are still exorbitant. As

a result, researchers have investigated the

many ways in which the compiler predicts the

best decisions using machine learning to solve

smaller compilation problems. Monsifrot et

al. pioneered the use of a machine learning

decision-based tree approach to predict the

optimal compiler decision [21].

IV. MACHINE LEARNING MODELS

Compiler optimization can utilize a wide

range of machine learning algorithms [22].

The two major categories are as follows:

supervised and unsupervised learning models.

A. Supervised Learning Model:

In this technique, the model learns from

empirical data and the program's analytical

properties (features), understands the

correlation between these properties, and

optimizes decisions to achieve optimal

performance. The output determines which

predictive model to use; if the output is

continuous, then the predictive model is a

regression model, or if it is discrete, then it is

a classification model.

Regression is a technique in which a

machine learns from input data. Most

compilation tasks use this technique, which

includes predicting program execution input,

speeding up program execution based on

input, and reducing latency workloads [23–

24]. The most discussed regression models are

simple linear and advanced support vector

machines (SVMs) and artificial neural

networks (ANNs) [25-26]. Another technique

and classification extensively leverage past

data from previous AI-based code

optimization work. This method takes in a

component vector and predicts which of a set

of classes the feature vector is associated with.

For example, by considering the input vector,

which indicates the characteristics of the

selected cycle, this technique can predict

unknown features for iterative data.

B. Unsupervised Learning Model:

In unsupervised learning, there is no

output labelled, just the input values that the

learning algorithms take as feature values.

Clustering is a technique that involves

grouping input data items into subsets.

Typically, we use this model to form the

fundamental framework for data division.

Many techniques fall under the category of K-

cluster unsupervised algorithms. The most

popular algorithms are KNN (k-nearest

neighbours), hierarchal clustering, anomaly

detection, neural networks, principal

component analysis, independent component

analysis, and the Apriori algorithm. K-means,

the clustering algorithm combines the data

input into three clusters on a two-dimensional

feature space [27]. The statistical method of

principal component analysis (PCA) primarily

reduces feature dimensions. Meanwhile,

researchers propose an auto-encoder, a newly

proposed artificial neural network-based

architecture, to discover efficient coding [28].

V. CASE STUDIES AND EVALUATION

Machine learning (ML) is being

increasingly applied to compiler optimization,

which is a field of research that is

experiencing tremendous growth. This part

provides an overview of the most significant

works, emphasizing their contributions and

the areas that our study intends to fill.

Salwa Iqbal(et al.), Machine Learning Based Compiler Optimization Technique (pp. 37-47)

SJET | P-ISSN: 2616-7069 |E-ISSN: 2617-3115 | Vol. 7 No. 1 January – June 2024

43

Monsifrot et al. were pioneers in

investigating the application of machine

learning (ML) in the field of compiler

optimization [29]. A supervised learning

strategy was implemented, utilizing a decision

tree model to train and predict unroll factors

for loops. The predictions were based on static

code properties. This ground breaking

research showcased the capacity of machine

learning to surpass conventional heuristics in

targeted optimization problems [29].

Agakov et al. further developed this idea

by employing Bayesian networks to predict

the profitability of inlining functions [30].

Their approach utilized a combination of static

and dynamic program characteristics to

generate predictions, illustrating that

including various types of variables might

lead to enhanced optimization decisions [30].

In a separate study conducted by Cavazos

and O'Boyle, it was proposed to utilize

reinforcement learning to adaptively modify

the optimization settings of a Just-In-Time

(JIT) compiler [31]. By employing this

method, the compiler gained information and

adapted its optimization strategy by studying

the performance feedback of the code it

produced. Consequently, it consistently

enhanced the efficiency of the program's

execution time over a specific duration [31].

In 2008, Fursin et al. introduced the

concept of Collective Optimization, which

utilizes collaborative machine learning

techniques to improve code optimization. This

framework enables the sharing and reuse of

optimization knowledge across different

programs and compilation settings, leading to

the development of more robust and widely

applicable optimization strategies [32].

In 2018, Ashouri et al. did a thorough

investigation of machine learning methods

used to optimize compilers. The approaches

were categorized into supervised learning,

unsupervised learning, and reinforcement

learning, with a thorough analysis of the

benefits and drawbacks of each category.

Their investigation highlighted the growing

trend of utilizing deep learning models for

advanced optimization tasks, which allows for

the identification of intricate patterns within

large datasets [33].

In 2018, Wang and O'Boyle presented a

sophisticated deep learning system

specifically developed to automate the process

of compiler optimization. Their methodology

utilized a deep neural network to establish a

direct relationship between program attributes

and optimization choices, so eliminating the

need for manually crafted heuristics. This

approach exhibited significant improvements

in performance, while also providing insights

into the challenges related to the

interpretability and training of deep learning

models in this specific context [34].

Despite these advancements, there are still

several challenges in the implementation of

machine learning for compiler optimization.

Several ongoing studies focus on specific

optimization challenges and aim to tackle the

comprehensive optimization of compilers.

VI. PERFORMANCE METRICS

The performance measures commonly

encompassed in this context are the reduction

of execution time, energy efficiency, and the

capacity to generalize to programs that have

not been previously encountered.

Minimization of Execution Time

Machine learning models regularly

demonstrated substantial decreases in

execution time. Wang and O'Boyle [34] found

that deep learning models led to an average

decrease of 12%. Similarly, Monsifrot et al.

[29] and Agakov et al. [30] achieved

reductions of 10% and 8% respectively.

Optimizing the use of energy

Research conducted by Cavazos and

O'Boyle [31] and Fursin et al. [32] have

emphasized enhancements in energy

efficiency. Cavazos and O’Boyle [31]

showcased a 15% enhancement in energy

efficiency by employing reinforcement

learning, whereas Fursin et al. [32]

Salwa Iqbal(et al.), Machine Learning Based Compiler Optimization Technique (pp. 37-47)

SJET | P-ISSN: 2616-7069 |E-ISSN: 2617-3115 | Vol. 7 No. 1 January – June 2024

44

documented a maximum improvement of 20%

using collective optimization approaches.

Extension to Unfamiliar Programs

The capacity of machine learning models

to extrapolate to unfamiliar programs was

assessed by testing models on distinct test sets.

In their study, Wang and O'Boyle [34]

demonstrated that their deep learning model

achieved consistently excellent accuracy, with

a little decrease of approximately 3% in

performance when applied to new

applications.

Multiple research studies have also

performed ablation experiments to determine

the influence of various features and

components on the performance of the model:

Importance of Features

The presence of dynamic execution

elements was determined to be crucial for

making precise predictions. In their study,

Wang and O'Boyle [34] found a notable

decline in performance when the dynamic

characteristics were eliminated, highlighting

the crucial role they play in the machine

learning model.

Complexity of the model

There was a correlation between the

complexity of the ML models and the gains in

performance. Less intricate models such as

decision trees demonstrated moderate

enhancements [29], whereas more intricate

models like DNNs [34] achieved superior

performance gains but necessitated greater

processing resources.

The evaluated research conducted a

comparison between machine learning-based

optimizations and the latest heuristic

approaches employed in widely-used

compilers like GNU compiler Collection

(GCC) and Low-level Virtual Machine

(LLVM). The findings consistently

demonstrated that machine learning-based

approaches surpassed conventional methods:

• The decision tree approach outperformed

GCC's default heuristics by achieving a

10% reduction in execution time [29].

• Bayesian networks resulted in an 8%

decrease in execution time compared to

GCC's default inlining techniques [30].

• Reinforcement learning demonstrated a

15% improvement in performance when

compared to static JIT optimization

approaches [31].

• Collective optimization techniques

surpassed traditional methods, resulting

in a notable 20% decrease in execution

time [32].

• On average, deep learning models

decreased execution time by 12%

compared to LLVM's heuristics [34].

VII. CHALLENGES AND FUTURE

DIRECTIONS

Although machine learning-based

compiler optimization holds promise, there

are still some difficulties that need to be

addressed. The technological challenge of

integrating ML models with current compiler

infrastructures might be considerable. The

computational complexity and resource

demands of training and deploying machine

learning models are substantial. Furthermore,

guaranteeing the precision and dependability

of machine learning-based optimizations,

particularly in safety-critical applications, is a

significant worry. Addressing the difficulty of

generalizing machine learning models to

function across many compilers and

programming languages is another task that

must be tackled.

The prospects for machine learning-based

compiler optimization are promising, with

numerous developing trends and potential

breakthroughs on the horizon. Hybrid

methodologies that integrate machine learning

with conventional techniques are becoming

increasingly popular. Improvements in

hardware, such as dedicated accelerators

designed for machine learning activities, have

the potential to significantly improve the

performance of machine learning-based

Salwa Iqbal(et al.), Machine Learning Based Compiler Optimization Technique (pp. 37-47)

SJET | P-ISSN: 2616-7069 |E-ISSN: 2617-3115 | Vol. 7 No. 1 January – June 2024

45

improvements. Additional investigation is

required to tackle the obstacles and

constraints, specifically with the ability to

apply findings to a wider context and the

dependability of the results.

VIII. CONCLUSION

This article provides an overview of the

contemporary techniques employed by

compilers for optimizing code. Numerous

strategies and procedures have been suggested

to enhance the efficiency and utility of

compilers. However, the effectiveness of

these strategies is contingent upon the specific

nature of the program. The primary objective

of the compiler is to minimize the size of the

code and generate optimized code.

Researchers have suggested multiple

strategies to optimize compilers, but, they still

need to address certain deficiencies in their

recommendations in order to improve their

effectiveness. Using a compiler also has

significant disadvantages that need to be

addressed. Compilers must possess the

capability to produce optimized code,

minimize code size, utilize memory

efficiently, and enhance a program's execution

speed.

REFERENCES

[1] I. H Sarker "Machine learning:

Algorithms, real-world applications and

research directions." SN computer

science, Vol. 2, no. 3, 2021: 160.

[2] K. Hoste and L. Eeckhout “Cole:

compiler optimization level exploration”,

In Proceedings of the 6th annual

IEEE/ACM international symposium on

Code generation and optimization, 2008

April, pp. 165-174.

[3] S. V Sarode “A Review Paper on

Compiler Optimization”, International

Journal of Research Publication and

Reviews, 2024, Vol 5, no 1, pp 4670-

4673.

[4] P. B. Schneck” A survey of compiler

optimization techniques”, In Proceedings

of the ACM annual conference, 1973

August, pp. 106-113.

[5] U. P. Khedker, A. Sanyal, and B. Karkare

“Data flow analysis: theory and

practice”,CRC Press, 2017.

[6] U. Bondhugula, S. Dash, O. Gunluk, and

L. Renganarayanan “A model for fusion

and code motion in an automatic

parallelizing compiler”, In 2010 19th

International Conference on Parallel

Architectures and Compilation

Techniques (PACT), 2010 September,

IEEE, pp. 343-352.

[7] A. D. Robison “Impact of economics on

compiler optimization”, In Proceedings

of the 2001 joint ACM-ISCOPE

conference on Java Grande, 2001 June,

pp. 1-10.

[8] P. Zhao, and J. N. Amaral” To inline or

not to inline? Enhanced inlining

decisions”, In International Workshop on

Languages and Compilers for Parallel

Computing, 2003, October, Springer,

Berlin, Heidelberg, pp. 405-419.

[9] Aman Raghu Malali, Ananya Pramod,

Jugal Wadhwa, Sini Anna Alex “A

Survey of Compiler Optimization

Techniques”, International Journal of

Research in Engineering, Science and

Management, 2019, Vol. 2, no.5.

[10] C. Lattner” Introduction to the llvm

compiler infrastructure”, In Itanium

conference and expo, 2006 April.

[11] K. D. Cooper, L. T. Simpson, and C. A.

Vick” Operator strength reduction”, ACM

Transactions on Programming

Languages and Systems (TOPLAS), Vol.

23, no. 5, 2001, pp. 603-625.

[12] A. Monsifrot, F. Bodin, and R.Quiniou”

A machine learning approach to

automatic production of compiler

heuristics”, In International conference

on artificial intelligence: methodology,

systems, and applications, 2002

September, Springer, Berlin, Heidelberg,

pp. 41-50.

[13] S. Lee, S. J. Min, and R. Eigenmann”

OpenMP to GPGPU: a compiler

framework for automatic translation and

Salwa Iqbal(et al.), Machine Learning Based Compiler Optimization Technique (pp. 37-47)

SJET | P-ISSN: 2616-7069 |E-ISSN: 2617-3115 | Vol. 7 No. 1 January – June 2024

46

optimization”, ACM Sigplan

Notices, Vol. 44, no. 4, 2010, pp. 101-

110.

[14] N. Johnson, and A. Mycroft” Combined

code motion and register allocation using

the value state dependence graph”,

In International Conference on Compiler

Construction, Springer, Berlin,

Heidelberg, 2003 April, pp. 1-16.

[15] A. Monsifrot, F. Bodin, and R. Quiniou,

“A machine learning approach to

automatic production of compiler

heuristics,” in International Conference

on Artificial Intelligence: Methodology,

Systems, and Applications, 2002, pp. 41–

50.

[16] F. Bodin, T. Kisuki, P. Knijnenburg, M.

O'Boyle, and E. Rohou” Iterative

compilation in a non-linear optimisation

space”, In Workshop on Profile and

Feedback-Directed Compilation, 1998

October.

[17] T. Kisuki, P. Knijnenburg, M. O’Boyle,

and H. Wijshoff” Iterative compilation in

program optimization”, In Proc. CPC’10

(Compilers for Parallel Computers),

2000 January, pp. 35-44.

[18] R. Leupers, and P. Marwedel “Function

inlining under code size constraints for

embedded processors”, in Computer-

Aided Design, Digest of Technical

Papers. 1999 IEEE/ACM International

Conference on. IEEE, 1999, pp. 253–256.

[19] J. Cavazos, and M. F. P. O’Boyle

“Automatic tuning of inliningheuristics”,

in Proceedings of the 2005 ACM/IEEE

Conference on Supercomputing, ser.

SC ’05, 2005.

[20] K. Hoste, and L. Eeckhout “Cole:

Compiler optimization level exploration”

in Proceedings of the 6th Annual

IEEE/ACM International Symposium on

Code Generation and Optimization, ser.

CGO ’08, 2008, pp. 165–174.

[21] A. Monsifrot, F. Bodin, and R. Quiniou

“A machine learning approach to

automatic production of compiler

heuristics”, in International Conference

on Artificial Intelligence: Methodology,

Systems, and Applications,2002, pp. 41–

50.

[22] H. Leather and C. Cummins, "Machine

Learning in Compilers: Past, Present and

Future," 2020 Forum for Specification

and Design Languages (FDL), Kiel,

Germany, 2020, pp. 1-8, doi:

10.1109/FDL50818.2020.9232934.

[23] Z. Wang, and M. O’Boyle “Machine

learning in compiler optimization”,

Proceedings of the IEEE, Vol. 106, no.

11, 2018, pp.1879-1901.

[24] J. Bergstra, N. Pinto, and D.

Cox ”Machine learning for predictive

auto-tuning with boosted regression

trees”, In 2012 Innovative Parallel

Computing (InPar) IEEE,2012 May, pp.

1-9.

[25] C. K. Luk, S. Hong, and H. Kim “Qilin:

Exploiting parallelism on heterogeneous

multiprocessors with adaptive mapping”,

in Proceedings of the 42Nd Annual

IEEE/ACM International Symposium on

Microarchitecture, ser. MICRO 42, 2009,

pp. 45–55.

[26] Y. Wen, Z. Wang, and M. O’Boyle

“Smart multi-task scheduling for

OpenCL programs on CPU/GPU

heterogeneous platforms”, in 21st Annual

IEEE International Conference on High

Performance Computing (HiPC 2014).

IEEE, 2014.

[27] J. MacQueen “Classification and analysis

of multivariate observations”, In 5th

Berkeley Symp. Math. Statist.

Probability ,1967, pp. 281-297.

[28] T. Sherwood, E. Perelman, G. Hamerly,

and B. Calder “Automatically

characterizing large scale program

behavior”, ACM SIGPLAN Notices, Vol.

37, no. 10, 2002, pp.45-57.

[29] Monsifrot, A., Bodin, F., & Quiniou, R.

“A machine learning approach to

automatic production of compiler

heuristics”. Artificial Intelligence:

Methodology, Systems, and Applications

2002, pp. 41-50. Springer.

[30] F. Agakov onilla, E., Cavazos, J., Franke,

B., O’Boyle, M. F., Thomson, J.,

Salwa Iqbal(et al.), Machine Learning Based Compiler Optimization Technique (pp. 37-47)

SJET | P-ISSN: 2616-7069 |E-ISSN: 2617-3115 | Vol. 7 No. 1 January – June 2024

47

Williams, C. K., & Toussaint, M.

"Using machine learning to focus

iterative optimization," International

Symposium on Code Generation and

Optimization (CGO'06), New York,

USA, 2006, pp. 11 pp.-305.

[31] Cavazos, J., & O’Boyle, M. F. Automatic

tuning of inlining heuristics. In

Proceedings of the International

Conference on Supercomputing (ICS),

2006.

[32] Fursin, G., Temam, O., & Namolaru, M.

Collective optimization: A practical

collaborative approach. ACM

Transactions on Architecture and Code

Optimization (TACO), 4(3), 1-30, 2008.

[33] Ashouri, A. H., Killian, W., Cavazos, J.,

Palermo, G., & Silvano, C. A survey on

compiler autotuning using machine

learning. ACM Computing Surveys

(CSUR), 2018, 51(5), 96.

 [34] Z. Wang and M. O’Boyle, "Machine

Learning in Compiler

Optimization, " in Proceedings of the

IEEE, 2018, vol. 106, no. 11, pp. 1879-

1901.

