Contrast Normalization Filtering Modules for Segmentations of Retinal Blood Vessels from Color Retinal Fundus Images

Authors

  • qamar un nisa manzoor ali image processing

DOI:

https://doi.org/10.30537/sjet.v5i1.1025

Keywords:

Diabetic retinopathy: retinal image: optic disc: morphological tactics:Principle component analysis: double thershold

Abstract

Vision loss is one of the main complications of eye disease, especially diabetic retinopathy (DR), because DR is a silent disease affecting the retina of the eye and resulting in loss of vision. Manual observation of eye disease takes time and delays effective treatment, so computerized methods are used to diagnose eye disease by extracting their features such as blood vessels, optic disc, and other abnormalities. Many computerized methods are proposed but it is still lacking to obtain small vessels. To overcome this problem, we have proposed methods based on image processing techniques for detection of retinal vessels. The proposed method is based on the elimination of uneven illumination using morphological tactics and principal component analysis. These initial steps are known as the preprocessing module, and our post-processing module contains the vessel coherence and the double threshold binarization method to obtain an image of the segmented vessels. Our proposed method obtained comparable results (average results (sensitivity: 0.78, specificity: 0.95 and precision: 0.951)) compared to the existing methods on the DRIVE and STARE databases.

Downloads

Download data is not yet available.

References

. Li, Xiaotao, and Xiang Li. "The antidepressant effect of light therapy from retinal projections." Neuroscience bulletin 34.2 (2018): 359-368. [2]. Soomro, Toufique A., et al. "Role of image contrast enhancement technique for ophthalmologist as diagnostic tool for diabetic retinopathy." 2016 International conference on digital image computing: techniques and applications (DICTA). IEEE, 2016 [3]. S. Chaudhuri, S. Chatterjee, N. Katz, M. Nelson, and M. Goldbaum, ‘‘Detection of blood vessels in retinal images using two-dimensional matched filters,’’ IEEE Trans. Med. Imag., vol. 8, no. 3, pp. 263–269, Sep. 1989. [4]. Pakter, Helena M., et al. "Measuring arteriolar-to-venous ratio in retinal photography of patients with hypertension: development and application of a new semi automated method." American journal of hypertension 18.3 (2005): 417-421. [5].Toufique Ahmed Soomro, Junbin Gao, Tariq M Khan, Ahmad Fadzil M Hani, Mohammad A. U. Khan, and Manoranjan Paul, “Computerised approaches for the detection of diabetic retinopathy using retinal fundus images: A survey,” Journal of Pattern Analysis and Application, pp. 1–35, 2017.

. Soomro, Toufique Ahmed, et al. "Deep learning models for retinal blood vessels segmentation: A review." IEEE Access 7 (2019): 71696-71717.

. Soomro, Toufique Ahmed, et al. "Impact of image enhancement technique on CNN model for retinal blood vessels segmentation." IEEE Access 7 (2019): 158183-158197

. Lathen, G.; Jonasson, J.; Borga, M. Blood vessel segmentation using multi-scale quadrature filtering. Pattern Recognit. Lett. 2010, 31, 762–67.

. Sun, K.; Chen, Z.; Jiang, S. Local Morphology Fitting Active Contour for Automatic Vascular Segmentation. IEEE Trans. -Bio-Med Eng. 2012, 59, 464–473

. Staal, J.; Abràmoff, M.D.; Niemeijer, M.; Viergever, M.A.; Van Ginneken, B. Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 2004, 23, 501–509.

. Sinthanayothin, C.; Boyce, J.F.; Cook, H.L.; Williamson, T.H. Automated localization of the optic disc, fovea, and retinal blood vessels from digital color fundus images. Br. J. Ophthalmol. 1999, 83, 890–902.

. Xing, Y.; Qinmu, P.; Yuan, Y.; Yiu-ming, C.; Jiajia, L. Segmentation of Retinal Blood Vessels Using the Radial Projection and Semi-supervised Approach. Pattern Recognit. 2011, 44, 10–11.

. Ricci, E.; Perfetti, R. Retinal Blood Vessel Segmentation Using Line Operators and Support Vector Classification. IEEE Trans. Med. Imaging 2007, 26, 1357–1365.

. Marin, D.; Aquino, A.; Gegundez-Arias, M.E.; Bravo, J.M. A New Supervised Method for Blood Vessel Segmentation in Retinal Images by Using Gray-Level and Moment.

Invariants-Based Features. IEEE Trans. Med. Imaging 2011, 30, 146–158. [15]. Soares, João VB, et al. "Retinal vessel segmentation using the 2-D Gabor wavelet and supervised classification." IEEE Transactions on medical Imaging 25.9 (2006): 1214-1222. [16]. Bankhead, Peter, et al. "Fast retinal vessel detection and measurement using wavelets and edge location refinement." PloS one 7.3 (2012): e32435. [17]. Al-Diri, Bashir, Andrew Hunter, and David Steel. "An active contour model for segmenting and measuring retinal vessels." IEEE Transactions on Medical imaging 28.9 (2009): 1488-1497 [18]. Yin, Xiaoxia, et al. "Accurate image analysis of the retina using hessian matrix and binarisation of thresholded entropy with application of texture mapping." PloS one 9.4 (2014): e95943. [19]. Liskowski, Paweł, and Krzysztof Krawiec. "Segmenting retinal blood vessels with deep neural networks." IEEE transactions on medical imaging 35.11 (2016): 2369-2380. [20]. Li, Qiaoliang, et al. "A cross-modality learning approach for vessel segmentation in retinal images." IEEE transactions on medical imaging 35.1 (2015): 109-118. [21]. Mendonca, Ana Maria, and Aurelio Campilho. "Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction." IEEE transactions on medical imaging 25.9 (2006): 1200-1213. [22] . Martínez-Pérez, M. Elena, et al. "Retinal blood vessel segmentation by means of scale-space analysis and region growing." International Conference on Medical Image Computing and Computer-Assisted Intervention. Springer, Berlin, Heidelberg, 1999. [23]. Martinez-Perez, M. Elena, et al. "Segmentation of blood vessels from red-free and fluorescein retinal images." Medical image analysis 11.1 (2007): 47-61.

.Shankar, K., et al. "Hyperparameter tuning deep learning for diabetic retinopathy fundus image classification." IEEE Access 8 (2020): 118164-118173.

.Yin, Pengshuai, et al. "Deep Guidance Network for Biomedical Image Segmentation." IEEE Access 8 (2020): 116106-116116. [27]. Soomro, Toufique Ahmed, et al. "Contrast normalization steps for increased sensitivity of a retinal image segmentation method." Signal, Image and Video Processing 11.8 (2017): 1509-1517. [28]. Azzopardi, George, et al. "Trainable COSFIRE filters for vessel delineation with application to retinal images." Medical image analysis 19.1 (2015): 46-57. [29]. Elseid, Arwa Ahmed Gasm, Mohamed Eltahir Elmanna, and Alnazier Osman Hamza. "Evaluation of spatial filtering techniques in retinal fundus images." American Journal of Artificial Intelligence 2.2 (2018): 16. [30]. Soomro, Toufique Ahmed, et al. "Retinal blood vessels extraction of challenging images." Australasian Conference on Data Mining. Springer, Singapore, 2018. [31] . J. Lee, “Digital image enhancement and noise filtering by use of local statistics,” IEEE Trans. Pattern Anal. Mach. Intel., vol. Pami-2, no. 2, pp. 165–168, 1980 March. [32]. Gottschlich, Carsten, and C-B. Schönlieb. "Oriented diffusion filtering for enhancing low-quality fingerprint images." IET biometrics 1.2 (2012): 105-113.

. Y. Zhao, L. Rada, K. Chen, S. P. Harding, and Y. Zheng, ‘‘Automated vessel segmentation using infinite perimeter active contour model with hybrid region information with application to retinal images,’’ IEEE Trans. Med. Imag., vol. 34, no. 9, pp. 1797–1807, Sep. 2015.

. M. Melinščak, P. Prentašić, and S. Lončarić, ‘‘Retinal vessel segmentation using deep neural networks,’’ in Proc. Int. Conf. Comput. Vis. Theory Appl., 2015, pp. 1–6

. T. A. Soomro, M. A. U. Khan, J. Gao, T. M. Khan, M. Paul, and N. Mir, ‘‘Automatic retinal vessel extraction algorithm,’’ Int. Conf. Digit. Image Comput., Techn. Appl. (DICTA), Nov. 2016, pp. 1–8

. M. A. U. Khan, T. A. Soomro, T. M. Khan, D. G. Bailey, J. Gao, and N. Mir, ‘‘Automatic retinal vessel extraction algorithm based on contrast-sensitive schemes,’’ in Proc. Int. Conf. Image Vis. Comput. New Zealand (IVCNZ), Nov. 2016, pp. 1–5

. T. A. Soomro, T. M. Khan, M. A. U. Khan, J. Gao, M. Paul, and L. Zheng, ‘‘Impact of ICA-based image enhancement technique on retinal blood vessels segmentation,’’ IEEE Access, vol. 6, pp. 3524–3538, 2018.

. T. A. Soomro, J. Gao, Z. Lihong, A. J. Afifi, S. Soomro, and M. Paul, ‘‘Retinal blood vessels extraction of challenging images,’’ in Data Mining (Communications in Computer and Information Science), vol. 996. Singapore: Springer, 2019, pp. 347–359.

.T. A. Soomro, A. J. Afifi, J. Gao, O. Hellwich, M. A. U. Khan, M. Paul, and L. Zheng, ‘‘Boosting sensitivity of a retinal vessel segmentation algorithm with convolutional neural network,’’ in Proc. Int. Conf. Digit. Image Comput., Techn. Appl. (DICTA), Nov. 2017.

. T. A. Soomro, T. M. Khan, M. A. U. Khan, J. Gao, M. Paul, and L. Zheng, ‘‘Impact of ICA-based image enhancement technique on retinal blood vessels segmentation,’’ IEEE Access, vol. 6, pp. 3524–3538, 2018.

. T. A. Soomro, A. J. Afifi, J. Gao, O. Hellwich, M. Paul, and L. Zheng, ‘‘Strided U-net model: Retinal vessels segmentation using dice loss,’’ in Proc. Digit. Image Comput., Techn. Appl. (DICTA), Dec. 2018, pp. 1–8.

. M. K. T. M. Khan and D. T. A. Bailey Soomro, ‘‘A generalized multi-scale line-detection method to boost retinal vessel segmentation sensitivity,’’ Pattern Anal. Appl., vol. 22, no. 3, pp. 1177–1196, 2018.

. T. A. Soomro, J. Gao, Z. Lihong, A. J. Afifi, S. Soomro, and M. Paul, ‘‘Retinal blood vessels extraction of challenging images,’’ in Data Mining (Communications in Computer and Information Science), vol. 996, nos. 1–12. Singapore: Springer, 2019.

. T. A. Soomro, A. J. Afifi, A. Ali Shah, S. Soomro, G. A. Baloch, L. Zheng, M. Yin, and J. Gao, ‘‘Impact of image enhancement technique on CNN model for retinal blood vessels segmentation,’’ IEEE Access, vol. 7, pp. 158183–158197, 2019. [45]. Soomro, T.A.; Ali, A.; Jandan, N.A.; Afifi, A.J.; Irfan, M.; Alqhtani, S.; Glowacz, A.; Alqahtani, A.; Tadeusiewicz, R.; Kantoch, E.; Zheng, L. Impact of Novel Image Preprocessing Techniques on Retinal Vessel Segmentation. Electronics 2021, 10, 2297. https://doi.org/10.3390/electronics10

Downloads

Published

2022-06-30