Assessment of Rice Residues as Potential Energy Source in Pakistan

Authors

  • Tarique Ahmed Memon Quaid-e-Awam University of Engineering, Science and Technology Campus Larkana Sindh Pakistan.

DOI:

https://doi.org/10.30537/sjet.v5i1.982

Keywords:

Rice Husk; Rice Straw; Energy Potential; Pollutant emissions; Crop residues.

Abstract

Pakistan produces enormous quantity of biomass wastes for example rice straw (RS) and rice husk (RH), wheat straw, and other biomass wastes that are being burned in the field after crop harvest to prepare the land for next crop. Biomass is known as potential energy source which can be effectively utilized as an alternative to fossil fuels. This study aims to assess the energy potential and gaseous pollutant emissions from rice residues such as RS and RH. The Energy potential of crop residues in Pakistan was obtained by considering the residual characteristics like residue to crop product ratio, moisture level and lower heating value of dry biomass was obtained from the South Asian countries. The mathematical models were defined for the assessment of amount of residues, available energy potential and emissions of gaseous pollutants. The estimated amount of rice residues is 10147.65 thousand tons dry biomass. The theoretical and available energy potential of the rice residues were estimated as 159219TJ, and 100,431TJ respectively. Based on dry matter fraction and proportion of crop residue burnt, the total amount of crop residue burnt for RS and RH were 1356.38 thousand tons and 307.7 thousand tons respectively. Total emissions from burning of rice residues were 1749.59, 27.639, 2.432, 1.265, 4.997, and 0.549 Gg for CO₂, CO, NO, NO₂, NOx, and SO₂ respectively.  It was concluded that the crop residues generated in Pakistan can be effectively utilized as an alternative energy source, to reduce demand supply gap, reliance on fossils fuels and lower contribution in global warming.

Downloads

Download data is not yet available.

References

M. Irfan et al., “Assessing the energy dynamics of Pakistan: Prospects of biomass energy,” Energy Reports, vol. 6, pp. 80–93, 2020, doi: 10.1016/j.egyr.2019.11.161.

K. R. Abbasi, M. Shahbaz, Z. Jiao, and M. Tufail, “How energy consumption, industrial growth, urbanization, and CO2 emissions affect economic growth in Pakistan? A novel dynamic ARDL simulations approach,” Energy, vol. 221, p. 119793, 2021, doi: 10.1016/j.energy.2021.119793.

M. O. Chaudhry, M. Z. Faridi, and S. Riaz, “Energy Crisis and Macroeconomic Stability in Pakistan.,” Pakistan J. Soc. Sci., vol. 35, no. 1, pp. 425–436, 2015.

G. of P. Finance Division, Pakistan Economic Survey Report 2019-20. .

T. Iqbal et al., “Sketching Pakistan’s energy dynamics: Prospects of biomass energy,” J. Renew. Sustain. Energy, vol. 10, no. 2, 2018, doi: 10.1063/1.5010393.

N. Hossain, M. A. Bhuiyan, B. K. Pramanik, S. Nizamuddin, and G. Griffin, “Waste materials for wastewater treatment and waste adsorbents for biofuel and cement supplement applications: A critical review,” J. Clean. Prod., vol. 255, 2020, doi: 10.1016/j.jclepro.2020.120261.

K. Harijan, M. A. Uqaili, M. Memon, and U. K. Mirza, “Forecasting the diffusion of wind power in Pakistan,” Energy, vol. 36, no. 10, pp. 6068–6073, 2011, doi: 10.1016/j.energy.2011.08.009.

H. Zhang et al., “A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory,” Atmos. Environ., vol. 42, no. 36, pp. 8432–8441, 2008, doi: 10.1016/j.atmosenv.2008.08.015.

N. Abas, A. Kalair, N. Khan, and A. R. Kalair, “Review of GHG emissions in Pakistan compared to SAARC countries,” Renew. Sustain. Energy Rev., vol. 80, no. January 2016, pp. 990–1016, 2017, doi: 10.1016/j.rser.2017.04.022.

M. M. Rahman and J. V. Paatero, “A methodological approach for assessing potential of sustainable agricultural residues for electricity generation: South Asian perspective,” Biomass and Bioenergy, vol. 47, no. 0, pp. 153–163, 2012, doi: 10.1016/j.biombioe.2012.09.046.

N. A. Khan and H. el Dessouky, “Prospect of biodiesel in Pakistan,” Renew. Sustain. Energy Rev., vol. 13, no. 6–7, pp. 1576–1583, 2009, doi: 10.1016/j.rser.2008.09.016.

M. M. Rafique and H. M. S. Bahaidarah, “Thermo-economic and environmental feasibility of a solar power plant as a renewable and green source of electrification,” Int. J. Green Energy, vol. 16, no. 15, pp. 1577–1590, 2019, doi: 10.1080/15435075.2019.1677237.

H. Yaqoob et al., “Feasibility Study of a 50 MW wind farm project in Pakistan,” J. Adv. Res. Fluid Mech. Therm. Sci., vol. 74, no. 2, pp. 27–42, 2020, doi: 10.37934/ARFMTS.74.2.2742.

H. Yaqoob et al., “Case Studies in Chemical and Environmental Engineering Energy evaluation and environmental impact assessment of transportation fuels in Pakistan,” Case Stud. Chem. Environ. Eng., vol. 3, no. December 2020, p. 100081, 2021, doi: 10.1016/j.cscee.2021.100081.

G. of P. Finance Division, Pakistan Economic Survey 2017-18. 2019.

L. A. Silva, I. F. S. dos Santos, G. de O. Machado, G. L. Tiago Filho, and R. M. Barros, “Rice husk energy production in Brazil: An economic and energy extensive analysis,” J. Clean. Prod., vol. 290, p. 125188, 2020, doi: 10.1016/j.jclepro.2020.125188.

K. Ahmed, S. Shahid, and N. Nawaz, “Impacts of climate variability and change on seasonal drought characteristics of Pakistan,” Atmos. Res., vol. 214, no. August, pp. 364–374, 2018, doi: 10.1016/j.atmosres.2018.08.020.

A. W. Bhutto, A. A. Bazmi, and G. Zahedi, “Greener energy: Issues and challenges for Pakistan - Biomass energy prospective,” Renew. Sustain. Energy Rev., vol. 15, no. 6, pp. 3207–3219, 2011, doi: 10.1016/j.rser.2011.04.015.

A. Abdullah et al., “Bioenergy potential and thermochemical characterization of lignocellulosic biomass residues available in Pakistan,” vol. 37, no. 2, pp. 1–8, 2020, doi: 10.1007/s11814-020-0624-0.

A. G. Noori, P. A. Salam, and A. M. Fazli, “Assessment of Selected Biomass Energy Potential in Afghanistan,” vol. 4, no. 6, pp. 6–14, 2019.

A. S. N. Huda, S. Mekhilef, and A. Ahsan, “Biomass energy in Bangladesh : Current status and prospects,” Renew. Sustain. Energy Rev., vol. 30, pp. 504–517, 2014, doi: 10.1016/j.rser.2013.10.028.

M. Hiloidhari and D. C. Baruah, “Rice straw residue biomass potential for decentralized electricity generation: A GIS based study in Lakhimpur district of Assam, India,” Energy Sustain. Dev., vol. 15, no. 3, pp. 214–222, 2011, doi: 10.1016/j.esd.2011.05.004.

R. Azhar, M. Zeeshan, and K. Fatima, “Crop residue open fi eld burning in Pakistan ; multi-year high spatial resolution emission inventory for 2000 – 2014,” Atmos. Environ., vol. 208, no. September 2018, pp. 20–33, 2019, doi: 10.1016/j.atmosenv.2019.03.031.

M. Irfan et al., “Estimation and characterization of gaseous pollutant emissions from agricultural crop residue combustion in industrial and household sectors of Pakistan,” Atmos. Environ., vol. 84, pp. 189–197, 2014, doi: 10.1016/j.atmosenv.2013.11.046.

G. CAO, X. ZHANG, S. GONG, and F. ZHENG, “Investigation on emission factors of particulate matter and gaseous pollutants from crop residue burning,” J. Environ. Sci., vol. 20, no. 1, pp. 50–55, 2008, doi: 10.1016/S1001-0742(08)60007-8.

T. Ahmed, B. Ahmad, and W. Ahmad, “Why do farmers burn rice residue? Examining farmers’ choices in Punjab, Pakistan,” Land use policy, vol. 47, pp. 448–458, 2015, doi: 10.1016/j.landusepol.2015.05.004.

A. Junpen, J. Pansuk, O. Kamnoet, and P. Cheewaphongphan, “Emission of Air Pollutants from Rice Residue Open,” 2018, doi: 10.3390/atmos9110449.

O. Erenstein, “Crop residue mulching in tropical and semi-tropical countries: An evaluation of residue availability and other technological implications,” Soil Tillage Res., vol. 67, no. 2, pp. 115–133, 2002, doi: 10.1016/S0167-1987(02)00062-4.

M. Haider, Published by the South Asian Network for Development and Environmental Economics (SANDEE) PO Box 8975, EPC 1056, Kathmandu, Nepal. Tel: 977-1-, no. 71. 2012.

P. K. Gupta et al., “Residue burning in rice-wheat cropping system: Causes and implications,” Curr. Sci., vol. 87, no. 12, pp. 1713–1717, 2004.

B. J. Heard, C. Cavers, and G. Adrian, “Up in Smoke—- Nutrient Loss with Straw Burning,” Better Crop., vol. 90, no. 3, pp. 10–11, 2006.

K. G. Mandal, A. K. Misra, K. M. Hati, K. K. Bandyopadhyay, and P. K. Ghosh, “Rice residue- management options and effects on soil properties and crop productivity,” vol. 2, no. January, pp. 224–231, 2004.

R. Article, S. Devi, C. Gupta, S. L. Jat, and M. S. Parmar, “Crop residue recycling for economic and environmental sustainability : The case of India,” pp. 486–494, 2017.

C. Román-Figueroa, N. Montenegro, and M. Paneque, “Bioenergy potential from crop residue biomass in Araucania Region of Chile,” Renew. Energy, vol. 102, pp. 170–177, 2017, doi: 10.1016/j.renene.2016.10.013.

A. Vatsanidou, C. Kavalaris, S. Fountas, N. Katsoulas, and T. Gemtos, “A life cycle assessment of biomass production from energy crops in crop rotation using different tillage system,” Sustain., vol. 12, no. 17, 2020, doi: 10.3390/SU12176978.

I. Kumar, V. Bandaru, S. Yampracha, L. Sun, and B. Fungtammasan, “Limiting rice and sugarcane residue burning in Thailand: Current status, challenges and strategies,” J. Environ. Manage., vol. 276, no. January, p. 111228, 2020, doi: 10.1016/j.jenvman.2020.111228.

M. Z. Haider, “Determinants of rice residue burning in the field,” J. Environ. Manage., vol. 128, pp. 15–21, 2013, doi: 10.1016/j.jenvman.2013.04.046.

C. Menke, S. Garivait, and B. Gadde, “Air pollutant emissions from rice straw open field burning in India , Thailand and the Philippines,” Environ. Pollut., vol. 157, no. 5, pp. 1554–1558, 2009, doi: 10.1016/j.envpol.2009.01.004.

O. Mohiuddin, A. Mohiuddin, M. Obaidullah, H. Ahmed, and S. Asumadu-Sarkodie, “Electricity production potential and social benefits from rice husk, a case study in Pakistan,” Cogent Eng., vol. 3, no. 1, 2016, doi: 10.1080/23311916.2016.1177156.

P. Ahmed Ali SOhu (Quaid-e-Awam University of Engineering, Science and Technology Nawabshah, Sindh, “Study and Analysis of the potential of Rice Husk (biomass) as a viable source of Energy in Larkano and Kamber Shahdadkot districts of Sindh.”

P. Forster et al., “Bounding the role of black carbon in the climate system : A Scientific assessment Bounding the role of black carbon in the climate system : A scienti fi c assessment,” no. November 2017, 2013, doi: 10.1002/jgrd.50171.

G. H. M. J. S. De Silva, S. Vishvalingam, and T. Etampawala, “Effect of waste rice husk ash from rice husk fuelled brick kilns on strength , durability and thermal performances of mortar,” Constr. Build. Mater., vol. 268, p. 121794, 2021, doi: 10.1016/j.conbuildmat.2020.121794.

L. Q. Luu and A. Halog, “Rice Husk Based Bioelectricity vs. Coal-fired Electricity: Life Cycle Sustainability Assessment Case Study in Vietnam,” Procedia CIRP, vol. 40, pp. 73–78, 2016, doi: 10.1016/j.procir.2016.01.058.

J. Singh, “Overview of electric power potential of surplus agricultural biomass from economic, social, environmental and technical perspective - A case study of Punjab,” Renew. Sustain. Energy Rev., vol. 42, pp. 286–297, 2015, doi: 10.1016/j.rser.2014.10.015.

M. A. Salam, K. Ahmed, N. Akter, and T. Hossain, “ScienceDirect A review of hydrogen production via biomass gasification and its prospect in Bangladesh,” Int. J. Hydrogen Energy, vol. 43, no. 32, pp. 14944–14973, 2018, doi: 10.1016/j.ijhydene.2018.06.043.

M. Uzair, S. S. Sohail, N. U. Shaikh, and A. Shan, “Agricultural residue as an alternate energy source: A case study of Punjab province, Pakistan,” Renew. Energy, vol. 162, pp. 2066–2074, 2020, doi: 10.1016/j.renene.2020.10.041.

J. Logeswaran, A. H. Shamsuddin, A. S. Silitonga, and T. M. I. Mahlia, “Prospect of using rice straw for power generation: a review,” Environ. Sci. Pollut. Res., vol. 27, no. 21, pp. 25956–25969, 2020, doi: 10.1007/s11356-020-09102-7.

A. O. Avcıoğlu, M. A. Dayıoğlu, and U. Türker, “Assessment of the energy potential of agricultural biomass residues in Turkey,” Renew. Energy, vol. 138, pp. 610–619, 2019, doi: 10.1016/j.renene.2019.01.053.

S. M. Safieddin Ardebili, “Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran,” Renew. Energy, vol. 154, pp. 29–37, Jul. 2020, doi: 10.1016/j.renene.2020.02.102.

M. Kashif et al., “Untapped renewable energy potential of crop residues in Pakistan: Challenges and future directions,” J. Environ. Manage., vol. 256, no. September 2019, p. 109924, 2020, doi: 10.1016/j.jenvman.2019.109924.

M. R. Abedin and H. S. Das, “Electricity from rice husk: A potential way to electrify rural Bangladesh,” Int. J. Renew. Energy Res., vol. 4, no. 3, pp. 604–609, 2014, doi: 10.20508/ijrer.15831.

H. Zhang et al., “A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory,” Atmos. Environ., vol. 42, no. 36, pp. 8432–8441, Nov. 2008, doi: 10.1016/j.atmosenv.2008.08.015.

M. Adnan, J. Ahmad, S. Farooq, and M. Imran, “A techno-economic analysis for power generation through wind energy : A case study of Pakistan,” Energy Reports, vol. 7, pp. 1424–1443, 2021, doi: 10.1016/j.egyr.2021.02.068.

G. of P. Finance Division, Pakistan Economic Survey Report 2018-19. 2020.

A. Ahmed, S. Hidayat, M. S. Abu Bakar, A. K. Azad, R. S. Sukri, and N. Phusunti, “Thermochemical characterisation of Acacia auriculiformis tree parts via proximate, ultimate, TGA, DTG, calorific value and FTIR spectroscopy analyses to evaluate their potential as a biofuel resource,” Biofuels, vol. 12, no. 1, pp. 9–20, 2021, doi: 10.1080/17597269.2018.1442663.

A. Abdullah et al., “Potential for sustainable utilisation of agricultural residues for bioenergy production in Pakistan: An overview,” J. Clean. Prod., vol. 287, p. 125047, 2021, doi: 10.1016/j.jclepro.2020.125047.

S. Reza, A. Ahmed, W. Caesarendra, and M. S. A. Bakar, “Acacia Holosericea : An Invasive Species for Bio-char , Bio-oil , and Biogas Acacia Holosericea : An Invasive Species for Bio-char , Bio-oil , and Biogas Production,” no. April, 2019, doi: 10.3390/bioengineering6020033.

M. Danish, M. Naqvi, U. Farooq, and S. Naqvi, “Characterization of South Asian agricultural residues for potential utilization in future ‘ energy mix ,’” Energy Procedia, vol. 75, pp. 2974–2980, 2015, doi: 10.1016/j.egypro.2015.07.604.

U. U. Rehman Zia, T. ur Rashid, W. N. Awan, A. Hussain, and M. Ali, “Quantification and technological assessment of bioenergy generation through agricultural residues in Punjab (Pakistan),” Biomass and Bioenergy, vol. 139, no. July, p. 105612, 2020, doi: 10.1016/j.biombioe.2020.105612.

S. Butt, I. Hartmann, and V. Lenz, “Bioenergy potential and consumption in Pakistan,” Biomass and Bioenergy, vol. 58, pp. 379–389, 2013, doi: 10.1016/j.biombioe.2013.08.009.

Eaz. husnain, “02-Agriculture finl,” pp. 19–40, 2016, [Online]. Available: http://www.finance.gov.pk/survey/chapters_17/02-Agriculture.pdf.

M. Hiloidhari, D. Das, and D. C. Baruah, “Bioenergy potential from crop residue biomass in India,” Renew. Sustain. Energy Rev., vol. 32, pp. 504–512, 2014, doi: 10.1016/j.rser.2014.01.025.

A. Milbrandt, R. Overend, A. Milbrandt, and R. Overend, “Assessment of Biomass Resources in Afghanistan Assessment of Biomass Resources in Afghanistan,” no. January, 2011.

K. K. C. K. Perera, P. G. Rathnasiri, S. A. S. Senarath, and A. G. T. Sugathapala, “Assessment of sustainable energy potential of non-plantation biomass resources in Sri Lanka,” vol. 29, pp. 199–213, 2005, doi: 10.1016/j.biombioe.2005.03.008.

A. K Hossain and O. Badr, “Prospects of renewable energy utilisation for electricity generation in Bangladesh,” Renew. Sustain. Energy Rev., vol. 11, no. 8, pp. 1617–1649, 2007, doi: 10.1016/j.rser.2005.12.010.

J. Singh, B. S. Panesar, and S. K. Sharma, “Energy potential through agricultural biomass using geographical information system-A case study of Punjab,” Biomass and Bioenergy, vol. 32, no. 4, pp. 301–307, 2008, doi: 10.1016/j.biombioe.2007.10.003.

D. G. Streets, K. F. Yarber, J. H. Woo, and G. R. Carmichael, “Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions,” Global Biogeochem. Cycles, vol. 17, no. 4, 2003, doi: 10.1029/2003gb002040.

M. M. Iqbal and A. M. Goheer, “Greenhouse gas emissions from agro-ecosystems and their contribution to environmental change in the Indus Basin of Pakistan,” Adv. Atmos. Sci., vol. 25, no. 6, pp. 1043–1052, 2008, doi: 10.1007/s00376-008-1043-z.

X. Zhang, Y. Lu, and X. Qian, “A high-resolution inventory of air pollutant emissions from crop residue burning in China,” Atmos. Environ., vol. 213, no. September 2018, pp. 207–214, 2019, doi: 10.1016/j.atmosenv.2019.06.009.

G. R. Carmichael, Biomass burning in Asia : Annual and seasonal estimates and atmospheric emissions Biomass burning in Asia : annual and seasonal estimates and atmospheric emissions, no. June. 2014.

Downloads

Published

2022-06-30