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Abstract 

A substantial quantity of real power loss is accounted for the distribution system due to its radial 

nature. Efficient and secure operation of a distribution system, it is necessary to minimize the 

active power loss and the system’s voltage stability index (VSI). Power loss and VSI in the 

distribution system can be minimized with the optimal integration of distributed generation (DG), 

shunt capacitor banks (SCB), and optimal feeder reconfiguration. In this regard, this paper 

presents a constraint composite differential evolution (C2oDE) algorithm for the optimal siting 

and sizing of DG and SCB along with network reconfiguration. Moreover, the proposed 

algorithm is combined with the two representative constraint handling techniques (feasibility rule 

and epsilon constraint method) to find a feasible solution. The proposed approach aims to achieve 

technical benefits such as minimization of active power loss, voltage deviation (VD), and voltage 

stability index (VSI). During the optimization process, these technical benefits are considered 

objective functions. Various six study cases are formulated to measure the performance of a 

proposed method. Simulation is carried out on IEEE standard 33 and 69-bus radial networks. The 

simulation results show that the proposed method and the feasibility rule constraint technique is 

effective and superior compared to the other recent applied optimization methods. Also, 

simulation results of case 6 (b), where the power factor of DG is controlled, give the best 

performance and minimum values of all the objective functions compared to all the other cases. 

 

Keywords: Distributed generation, Shunt capacitor bank, Distribution system, Composite 

differential evolution, constraint handling techniques 

 

1. Introduction 

The power system is comprised of generation, transmission, distribution, and utilization. The 

distribution system is the portion between the power transmission network and utilization. The 

distribution system is designed as the weakly meshed scheme (comprised of tie and sectionalizing 

switches), but its operation is radial. Due to the radial nature of the distribution system, a large 

portion of active power loss appears (Akbar et al., 2022). In the literature, one of the techniques is 

network reconfiguration has been used to minimize power loss (Ali et al., 2023). Interchanging of 

tie and sectionalizing switches is called network reconfiguration. Tie switches are generally 

opened, and sectional switches are closed. Recently, some metaheuristic techniques are used for 

optimal network reconfiguration. These includes runner-root algorithm (RRA) (T. T. Nguyen, 

Nguyen, Truong, Nguyen, & Phung, 2017), modified bacterial foraging optimization (MBFO) 
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(Naveen, Sathish Kumar, & Rajalakshmi, 2015), parallel genetic membrane computing (PGMC) 

(Lei, Wu, Shi, & Shi, 2015), modified particle swarm optimization (MPSO) (Flaih, Xiangning, 

Dawoud, & Mohammed, 2016) and cuckoo search algorithm (CSA) (T. Nguyen & Truong, 2015). 

 Moreover, integrating appropriate distributed generation position and capacity can give several 

technical, environmental, and economic benefits. Recently numerous techniques have been studied 

to find the proper location and degree of various DGs categories (like a solar photovoltaic, wind 

turbine, diesel generator etc.). In (Meena, Swarnkar, Gupta, & Niazi, 2015), Taguchi method (TM) 

was used for the optimal site and size of DG allocation to show its effectiveness considering the 

33-bus test system. In (Injeti & Kumar, 2011) genetic algorithm (GA) was proposed for the optimal 

capacity and allocation of DG in distribution system considering real power loss minimization. 

Hybrid GA-PSO was presented in the reference (Moradi & Abedini, 2012) considering the 

objective function of power loss, VD, and VSI. Authors in (Saravanamutthukumaran & 

Kumarappan, 2012) considered the various voltage-dependent load model for the optimal DG and 

capacity using the multiobjective optimization technique. Ant lion optimizer (ALO) (Palanisamy 

& Muthusamy, 2021) and hybrid ALO and fuzzy logic controller in (Samala & Mercy Rosalina, 

2021) are applied to find the optimal site and size of DG. Non-dominated based multiobjective 

modified krill herd (MKH) algorithm (Davodi, Esapour, Zare, & Rostami, 2015) was considered 

for optimal DG allocation. 

 

Like DGs, shunt capacitor banks (SCBs) are also used to minimize power loss and improve voltage 

profile. SCBs should also be effectively and efficiently allocated in the distribution system. 

Integration of SCBs added locally reactive power in the system to improve load-bus voltage and 

reduce power losses. It also reduces the costs of reactive power from the substations. In the 

literature, numerous optimization techniques have been presented for the optimal allocation of 

SCBs. That are PSO (Prakash & Sydulu, 2007), hybrid PSO and crow search algorithm (CSA) 

(Askarzadeh, 2016), differential evolution (DE) (Neelima & Subramanyam, 2011), hybrid DE and 

pattern search (PS) called DE-PS (El-fergany, 2013), teaching learning-based optimization 

(TLBO) (Sultana & Roy, 2014) and direct search algorithm (DSA) (Raju, Murthy, & Ravindra, 

2012),. Moreover, the distribution system’s operation and the loss minimization can be effectively 

achieved by considering simultaneous DGs and SCBs allocation. Therefore, hybrid integrations of 

DGs and SCBs can significantly minimize the distribution network losses and enhance system 

performance. In the literature, various number of optimization techniques has been used for the 

optimal allocation of simultaneous DGs and SCBs. Recently, some metaheuristic algorithms that 

includes harmony search algorithm (HSA) (Rao, Ravindra, Satish, & Narasimham, 2013), 

bacterial foraging optimization (BFO) (Mohamed Imran & Kowsalya, 2014), water cycle 

algorithm (WCA) (El-Ela, El-Sehiemy, & Abbas, 2018), a multi objective evolutionary algorithm 

based on decomposition (MOEA/D) (Partha P Biswas, Mallipeddi, Suganthan, & Amaratunga, 

2017), enhanced sine cosine algorithm (ESCA) (Saeidi, Niknam, Aghaei, & Zare, 2019), intersect 

mutation differential evolution (IMDE) (Khodabakhshian, Andishgar, & Systems, 2016) and 

backtracking search algorithm (BSA) (Fadel, Kilic, & Taskin, 2017) have been used for finding 
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the DG and SCBs allocation. Fireworks algorithm (FWA) (Mohamed Imran, Kowsalya, & Kothari, 

2014), adaptive cuckoo search algorithm (ACSA) (T. T. Nguyen, Truong, & Phung, 2016) and 

uniform voltage distribution based constructive reconfiguration (UVDA) in (Bayat, Bagheri, & 

Noroozian, 2016) have been used to find the simultaneous optimal reconfiguration and DG 

allocation. However, to our understanding, few researchers conduct ideal network reconfiguration 

in conjunction with optimal sizing and positioning of DGs and SCs that includes GA (Saonerkar 

& Bagde, 2014), linear population size reduction success history-based parameter adaption 

technique of DE (L-SHADE) LSHADE (P. P. Biswas, Suganthan, & Amaratunga, 2018) 

minimization of power loss as the objective function. 

  

This paper proposes the constraint composite differential evolution (C2oDE) (Wang, Li, Li, & 

Wang, 2018) algorithm integrated with the most widely used constraint handling techniques in the 

optimization era for optimal reconfiguration and DGs SCBs allocation. The proposed integrated 

optimization technique is intended to achieve the following advantages. 

1. Maximum penetration of DGs and SCBs improves the distribution system’s technical 

problems such as minimization of power loss and VD and improving VSI. 

2. Integration of uncontrollable power factor (PF) of DG (unity PF) and controllable PF of DG 

(operating between 0.8 and 1 lagging) considered for the flexible distribution system 

operation. 

3. Six study cases of single and weighted sum multi-objective functions are formulated to find 

the optimal reconfiguration, DGs, and SCBs allocations considering IEEE 33 and 69-bus 

systems. 

 

The remaining portion of the paper is prepared as; load flow, objective functions and constraints 

are discussed in section 2, whereas section 3 provides the structure of the proposed optimization 

method. Test systems, case studies, and parameters of C2oDE are discussed in section 4, while 

sections 5 and 6 present the simulation results and conclusion. 

 

2. Problem Formulation 

Simultaneous DG and SCB allocation, along with reconfiguration, are constrained optimization 

problems (COPs). Generally, the objective function (OF) of COP subject to inequality 𝑔𝑗(𝑥⃗𝑖) and 

equality ℎ𝑗(𝑥⃗𝑖) constraints can be described as: 

 

𝑚𝑖𝑛
𝑥⃗𝑖

𝑓(𝑥⃗𝑖) , 𝑥⃗𝑖 ∈ 𝑆,  𝐿𝑖 ≤ 𝑥𝑖 ≤ 𝑈𝑖  ∀ 𝑖 = 1,2, … , 𝐷  

Subject to 𝑔𝑗(𝑥⃗𝑖) ≤ 0, 𝑗 = 1, … , 𝑙 (1) 

ℎ𝑗(𝑥⃗𝑖) = 0, 𝑗 = 𝑙 + 1, … , 𝑚 

Whereas, 𝑥⃗𝑖 is the decision vector, D is the number of dimensions in decision vector, S is the entire 

search space where L and U are the bounds, l and m are the number inequality and equality 
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constraints. For the computation of objective function, equality and inequality constraints consider 

the typical configuration of a radial distribution network and the injection of DG and SCB is given 

in Fig. 1. 

 

V0 Vi

Pi+jQi

Vj Vn

Rij+jXij

Yij1 Yij2

PLj+jQLj

Pn+jQn

Sending End Receiving End

PLi+jQLi

DG SCB

Pj+jQj

 

Fig. 1. One line of typical radial feeder 

This study aims to determine the best capacity and position of both DGs and SCBs to minimize 

power loss and voltage deviation with maximization of VSI. For the computation of objective 

functions, it is first to calculate the magnitude of voltage and its angle at each bus using direct 

search based forward-backward sweep load flow technique; for detail, see reference (Jen-Hao, 

2003). In this paper, DG and SCB are considered negative PQ loads at power factor between 0.8 

and 1 and the bus at which DG unit is connected that bus is categorized as PQ bus. If the DG is 

added to the bus i and having output power PDG then the load at that bus changes from Pdi to 

(Pdi−PDG). Likewise, if SCB of reactive power QC is added to jth bus in the distribution system, it 

alters the reactive load Qdj to (Qdj−QC). During the optimization process, the proposed algorithm 

checks all possible places with all feasible sizes of both DGs and SCBs to find the appropriate 

grouping that reduces active power loss and VD while maximum VSI. Three objective functions 

(OF), such as power loss, VD, and VSI are considered in this work. In the first OF, real power loss 

(f1) is minimized that can be expressed as (P. P. Biswas et al., 2018): 

𝑓1(𝑥) = 𝑚𝑖𝑛 (∑ 𝑅𝑖𝑗.
𝑃𝑖

2+𝑄𝑖
2

|𝑉𝑖|2 ) (2) 

Whereas, Pi and Qi show the active and reactive power injection at bus i as shown in “Fig.1”. In 

the second technical objective function (f2) voltage deviation index is considered in which a better 

voltage profile is preserved and given as (Mohamed Imran et al., 2014) 
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𝑓2(𝑥) =  𝑚𝑖𝑛 ∑ (
𝑣𝑖−𝑣𝑖

𝑠𝑝𝑐𝑐

𝑣𝑖
 𝑚𝑎𝑥 −𝑣𝑖

 𝑚𝑖𝑛 )
2

𝑁
𝑖=1  (3) 

Whereas VSI is the third objective function (f3), which is one of the most significant indicators for 

secure operation. VSI between bus 𝑖 and 𝑗 can be expressed as (Mohamed Imran et al., 2014): 

𝑉𝑆𝐼𝑗 = 𝑉𝑖
4 − 4 × (𝑃𝐿𝑗,𝑒𝑓𝑓𝑅𝑖𝑗 + 𝑄𝐿𝑗,𝑒𝑓𝑓𝑋𝑖𝑗) × 𝑉𝑖

2 − 4 × (𝑃𝐿𝑗,𝑒𝑓𝑓𝑋𝑖𝑗 − 𝑄𝐿𝑗,𝑒𝑓𝑓𝑅𝑖𝑗)2 (4) 

Where, 𝑃𝐿𝑗,𝑒𝑓𝑓 and 𝑄𝐿𝑗,𝑒𝑓𝑓 are the effective real and reactive load demand fed through bus j, 

 𝑅𝑖𝑗  and 𝑋𝑖𝑗 are the line resistance and inductive reactance, respectively linking between bus 𝑖 and 

𝑗. During operation, a bus with the lowest value of VSI, among all others, needs to be maximized 

to enhance the entire network’s voltage level. Therefore, for the maximization of VSI, a third 

objective function is given as: 

𝑓3(𝑥) = 𝑚𝑎𝑥(1/𝑚𝑖𝑛(𝑉𝑆𝐼𝑖𝑗) )  ∀  𝑖, 𝑗  (5) 

Equality constraints: Power balance constraints are satisfied during the load flow and is described 

as: 

∑ 𝑃𝑁𝐺
𝑖=1 𝐺𝑖 = 𝑃𝐿 + 𝑃𝐿𝑜𝑠𝑠 (6) 

∑ 𝑄𝑁𝐺
𝑖=1 𝐺𝑖 = 𝑄𝐿 + 𝑄𝐿𝑜𝑠𝑠 (7) 

Inequality constraints: The bus voltage, branch flow during reconfiguration, and active/reactive 

power generated from the DGs along with DG power factor (PF) and installed capacitor limit 

should not increase beyond the permissible limit of the distribution network and given as: 

𝑉 𝑖
𝑚𝑖𝑛 ≤ |𝑉𝑖| ≤ 𝑉𝑖

𝑚𝑎𝑥 (8) 

𝐼𝑖𝑗 ≤ 𝐼𝑖𝑗( max )                                                  (9) 

∑ 𝑃𝐷𝐺,𝑖
𝑁𝐷𝐺
𝑖=1 ≤ 𝑃𝐷𝐺

𝑚𝑎𝑥 (10) 

∑ 𝑄𝐷𝐺,𝑖
𝑁𝐷𝐺
𝑖=1 ≤ 𝑄𝐷𝐺

𝑚𝑎𝑥 (11) 

∑ 𝑄𝐶,𝑖
𝑁𝐶
𝑖=1 ≤ 𝑄𝐶

𝑚𝑎𝑥 (12) 

𝑃𝐹𝑖
𝑚𝑖𝑛 ≤ 𝑃𝐹𝑖 ≤ 𝑃𝐹𝑖

𝑚𝑎𝑥 (13) 

Where, 𝑉 𝑖
𝑚𝑖𝑛 and 𝑉𝑖

𝑚𝑎𝑥 are the minimum and maximum allowable voltage limits for any bus i, 𝐼𝑖𝑗 

is the branch current. 𝑃𝐷𝐺
𝑚𝑎𝑥 and 𝑄𝐶

𝑚𝑎𝑥 are the maximum ratings of DG and SCB respectively, 𝑁𝐷𝐺 

and 𝑁𝑐 are the number of DGs and SCBs. 
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3. Proposed optimization algorithm 

Optimal reconfiguration combined with optimum capacity and position of both DGs and SCBs 

allocation problem is constrained optimization problem (COP). Since in the past two decades, 

evolutionary algorithms (EAs) have involved noticeable attention in resolving practical 

constrained optimization problems efficiently. Differential evolution (DE) is a popular EA. It has 

numerous attractive advantages for finding the feasible solution to COP because of simple 

implementation, includes few control parameters and achieves top rank in many computations. In 

the literature, numerous DE variants have been applied to find constrained type engineering 

problems. In this work, constrained composite DE (C2oDE) global optimizer (Wang et al., 2018) 

is proposed and added with two different representative constraint techniques to find the balance 

between constraints and objective functions. In the next sub-sections, the proposed constraint 

handling techniques (CHTs) and the C2oDE optimization framework are introduced. 

4.1 C2oDE algorithm 

In the C2oDE algorithm, differential vectors are used for the generation of offspring. 

Fundamentally, there are four stages in the proposed algorithm. In the first stage, randomly 

generation of an initial population 𝑥⃗𝑖
𝑡(𝑖 ∈ {1 … 𝑁𝑃}) in the range of lower and upper bound of 

search space. After that, in the second stage, mutation operators are used for the generation of 

mutant vector 𝑣⃗𝑖
𝑡(𝑖 ∈ {1 … 𝑁𝑃}), in this stage, three types of mutation operators were used: 

1) current-to-rand/l 

𝑣⃗𝑖
𝑡 = 𝑥⃗𝑖

𝑡 + 𝐹 ⋅ (𝑥⃗𝑟1
𝑡 − 𝑥⃗𝑖

𝑡) + 𝐹 ⋅ (𝑥⃗𝑟2
𝑡 − 𝑥⃗𝑟3

𝑡 ) (14) 

2) Modified rand-to-best/l 

𝑣⃗𝑖
𝑡 = 𝑥⃗𝑟1

𝑡 + 𝐹 ⋅ (𝑥⃗𝑏
𝑡 − 𝑥⃗𝑟2

𝑡 ) + 𝐹 ⋅ (𝑥⃗𝑟3
𝑡 − 𝑥⃗𝑟4

𝑡 )  (15) 

3) current-to-best/l 

𝑣⃗𝑖
𝑡 = 𝑥⃗𝑖

𝑡 + 𝐹 ⋅ (𝑥⃗𝑏
𝑡 − 𝑥⃗𝑖

𝑡) + 𝐹 ⋅ (𝑥⃗𝑟1
𝑡 − 𝑥⃗𝑟2

𝑡 )  (16) 

Where, 𝑥⃗𝑟1
𝑡  to 𝑥⃗𝑟4

𝑡  are the mutually different decision vectors randomly selected from 1 to NP 

individuals, 𝑥⃗𝑏
𝑡  shows the best solution of current generation t. Each mutation vector has distinct 

features for example mutation vector given in Eq. (14) can explore the entire search space and 

hence increase the diversity however, in Eq. (15) and (16) are accelerating the convergence to get 

information from the best individual. In the third step trial vector 𝑢⃗⃗𝑖
𝑡 is generated using a binomial 

crossover operator between each pair of 𝑣⃗𝑖
𝑡 and 𝑥⃗𝑖

𝑡, It can be noticed from Fig. 2 that, for each 

target vector, three offsprings are generated with distinct advantages of exploration and 

exploitation using trail vector generation strategy and pool of parameters. 
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Fig. 2. Framework of proposed C2oDE algorithm (Wang et al., 2018) 
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Fig. 3. Flow chart for the implementation of C2oDE 
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Furthermore, the feasibility rule (FR) and ε constrained method (ECM) are implemented with the 

proposed algorithm at phase of preselection and selection to select feasible solutions for the next 

generation. Both the constraint techniques can be defined by considering the equality and 

inequality constraints as shown in Eq. (1), and then to compute the overall constraint violation as: 

𝐺𝑗(𝑥⃗) = {
 𝑚𝑎𝑥 (0, 𝑔𝑗(𝑥⃗))  1 ≤ 𝑗 ≤ 𝑙

 𝑚𝑎𝑥 (0, |ℎ𝑗(𝑥⃗)|)   𝑙 + 1 ≤ 𝑗 < 𝑚
 (18) 

 

𝐺(𝑥⃗) = ∑ 𝐺𝑗
𝑚
𝑗=1 (𝑥⃗) (19) 

 

In FR two members of trail vector are randomly selected (say 𝑢⃗⃗𝑖 and 𝑢⃗⃗𝑗) and compare them as 

follows: 

i. If both 𝑢⃗⃗𝑖 and 𝑢⃗⃗𝑗  are feasible, select the one which has a minimum objective function value. 

ii. If both 𝑢⃗⃗𝑖 and 𝑢⃗⃗𝑗  are infeasible, select the one which has minimum constraint violation. 

iii. If 𝑢⃗⃗𝑖 is feasible and 𝑢⃗⃗𝑗  is an infeasible, always select feasible one 

In ECM, let it be assumed that 𝑢⃗⃗𝑖 is superior to 𝑥⃗𝑖 at the selection stage if and only if the following 

conditions are satisfied: 

{

𝑓(𝑢⃗⃗𝑖) < 𝑓(𝑥⃗𝑖), 𝑖𝑓 𝐺(𝑢⃗⃗𝑖) < ℰ 𝑎𝑛𝑑 𝐺(𝑥⃗𝑖) < ℰ

𝑓(𝑢⃗⃗𝑖) < 𝑓(𝑥⃗𝑖), 𝑖𝑓 𝐺(𝑢⃗⃗𝑖) = 𝐺(𝑥⃗𝑖)

𝐺(𝑢⃗⃗𝑖) < 𝐺(𝑥⃗𝑖)

                                     (20) 

Whereas, parameter ℰ = ℰ𝑜(1 − t/T)𝑐𝑝, if the ratio between current and maximum generation 

(t/T) is less than 50%, otherwise 0. However, ℰ𝑜 is the initial threshold, and in the starting it is 

equal to the maximum constraint violation. The parameter cp can be calculated as: 

𝑐𝑝 = −
 𝑙𝑜𝑔 𝜀0+𝜆

 𝑙𝑜𝑔 (1−𝑝)
 (21) 

Where 𝜆 is set to 6, and p controls the exploitation of objective function. The flow diagram of 

C2oDE is given in Fig. 3.  

4. Test Systems, Case studies, and Parameters of Algorithm 

In this paper, IEEE standard 33 and 69-bus test systems are used for finding the appropriate 

allocation of DG and SCB along with reconfiguration. The total complex power demand of the 

proposed methods is 3715+j2300 kVA and 3802+j2694 kVA, respectively. The proposed 

distribution network’s line and load data are given in (Biswas et al., 2018), and the base 

configuration is as shown in Fig. 4 and 5. Before and after network reconfiguration, sectionalizing 
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and tie switches must be the same in number. Both the networks have five loops shown in Fig. 4 

and 5. There must be an open switch in the entire loop, and all the buses are connected with the 

root bus (sub-station/slack bus) to ensure radial constraint. Optimal combination of tie and 

sectionalizing switches, the proposed algorithm conducts inspections of all such possible 

combinations. The developed basic loops of both the study systems are shown in Table 1. 

In case 1 to 4 maximum rating of DG injection is 2 MW in 33-bus test network and 2.25 MW in 

69-bus system, whereas; SCB rating is limited to less than the demand MVAr rating (Biswas et al., 

2017). Moreover, to increase DGs’ penetration (only in cases 5 and 6), the maximum rating of DGs 

and SCBs is less than active and reactive power demand. The parameters of C2oDE algorithm are 

shown in Table 2. 
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Fig. 4. Base configuration of 33-bus                                  Fig. 5. Base configuration of 69-bus 
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TABLE I.  Fundamental loops of 33 and 69-bus networks 

Network Switches (sectionalizing and Ties) in Fundamental Loops # Switches 

33-bus 

2, 3, 4, 5, 6, 7, 18, 19, 20, 33 10 
12, 13, 14, 34 4 

8, 9, 10, 11, 21, 33, 35 7 
15, 16, 17, 29, 30, 31, 32, 36 8 
22, 23, 24, 25, 26, 27, 28, 37 8 

69-bus 

3, 4, 5, 6, 7, 8, 9, 10, 35, 36, 37, 38, 39, 40, 41, 42, 69 17 
15, 16, 17, 18, 19, 20, 70 7 

11, 12, 13, 14, 43, 44, 45, 71 8 
46, 47, 48, 49, 52, 53, 54, 55, 56, 57, 58, 72 12 

21, 22, 23, 24, 25, 26, 59, 60, 61, 62, 63, 64, 73 13 
 

TABLE II.  Parameters of Co2DE for case 1 to case 6 

Study Cases Pop size Power Factor (PF) Decision variable Max 

Gen 

Case 1 to 4 100 1 5, 6, 6, 12 100 

Case 5 150 1 17 150 

Case 6 150 [0.8, 1] 20 150 

 

Furthermore, six study cases of single and weighted sum multi objective are considered.  

Case Description 

1 Power loss minimization considering the only reconfiguration 

2 Power loss minimization considering only DG 

3 Power loss minimization considering only SCB 

4 Power loss minimization considering simultaneous DG and SCB 

5 (a) Power loss minimization considering simultaneous DG (without controllable power 

factor) and SCB allocation along with optimal reconfiguration. 

(b) Weighted sum multiobjective optimization (power loss, VD, and VSI) considering 

simultaneous DG (without controllable power factor) and SCB allocation along with 

optimal reconfiguration. 

6 (a) Single objective (minimization of power loss) considering simultaneous DG (with 

controllable power factor) and SCB allocation along with optimal reconfiguration. 

(b) Weighted sum multiobjective optimization (power loss, VD, and VSI considering 

simultaneous DG (with controllable power factor) and SCB allocation along with 

optimal reconfiguration. 
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5. Simulation Results, Discussion and Comparison 

The simulation results are illustrated, evaluated, and contrasted in this section with similar 

previous research. Each case is run ten times, and in each run, output results are compatible with 

insignificant differences between separate runs. 

 

5.1 33-bus Distribution Network 

The simulation results and comparison of the proposed algorithm with the most recent algorithms 

for case 1 (only reconfiguration) are shown in Table 3. 

C2oDE accomplishes the minimum kW loss in case 1 along with some other algorithms as 

mentioned in Table 3. Results and comparison of case 2 to case 4 given in table 4 and it is clearly 

shown that the solution of C2oDE algorithm is good compared to most of the algorithms in terms 

of small cumulative rating of DGs, SCBs, and objective functions. Simulation results of case 2 

compared with that of HSA (Rao et al., 2013), PSO (Moradi & Abedini, 2012), FWA (Mohamed 

Imran et al., 2014), TM (Meena et al., 2015), BFOA (Mohamed Imran & Kowsalya, 2014), GA 

and hybrid GA/PSO (Moradi & Abedini, 2012). C2oDE algorithm gives 79.02 kW losses with 

61.0% compared to the base case. DGs are allocated at buses 25, 30 and 14 with the injection of 

0.4266, 0.9055 and 0.6678 MW, respectively. The minimum voltage level (0.9595 p.u) appeared 

on bus 33. Simulation results of case 3 (only SCBs allocation) are compared with the other methods 

BFOA (Mohamed Imran & Kowsalya, 2014), and PSO (Moradi & Abedini, 2012). In this case, 

SCBs are optimally allocated at bus numbers 30, 24 and 13 with the injection of 1.143, 0.566, and 

0.423, respectively. 

TABLE III. Simulation results and comparison of Case1 

Algorithm Tie Switches Ploss (kW) Vmin (bus) 

Base 33, 34, 35, 36, 37 202.6 0.9131 (18) 

C2oDE 7, 9, 14, 32, 37 139.55 0.9378 (32) 

RRA (T. T. Nguyen 

et al., 2017) 

7, 9, 14, 32, 37 139.55 0.9378 (32) 

CSA (T. Nguyen & 

Truong, 2015) 

7, 9, 14, 32, 37 139.55 0.9378 (32) 

FWA (Mohamed 

Imran et al., 2014) 

7, 9, 14, 28, 32 139.98 0.9413 (32) 

ACSA (T. T. 

Nguyen et al., 

2016) 

7, 9, 14, 28, 32 139.98 0.9413 (32) 

UVDA (Bayat et 

al., 2016) 

7, 9, 14, 32, 37 139.55 0.9378 (32) 
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In addition, Table 4 shows that the C2oDE effectively finds the optimal capacity and site of SCB 

with the lowest operational losses of 132.16 kW and connected SCBs capacity is 2.132 MVAr with 

the minimum voltage 0.938 p.u appeared on bus number 18. Case 4 suggests the injection of three 

DGs at three different buses 14, 25 and 30 with the injection of 0.605, 0.507 and 0.873 MW 

respectively and three SCBs at buses 11, 30 and 24 of the rating 0.447, 1.017 and 0.414 

respectively. Power loss18.878 kW is reached in comparison to GA [31], BFOA [20], LSHADE 

[32] and WCA [21] 
 

TABLE IV. IEEE 33-Bus Simulation Results and Assessment of Case 2 to Case 4 

Case 

# 

Method DG size (bus #) SCB size (bus #)  Ploss 

(kW) 

Vmin (bus 

#) 

Case 

2 
C2oDE 0.4266 (25), 0.9055 (30) 

0.6678 (14) 

-- 
    79.02 

0.9595 

(33) 

HSA (Rao et 

al., 2013)  

0.5724 (17), 0.107 (18), 

1.0462 (33) 

-- 
    96.76 

0.967 

(29) 

FWA 

(Mohamed 

Imran et al., 

2014)  

0.5897 (14), 0.189 (18), 

1.0146 (32) 

-- 

    88.68 

0.968 

TM (Meena et 

al., 2015) 

0.5876 (15), 0.1959 (25), 

0.783 (33) 

--        

91.305 

0.958 

(30) 

BFOA 

(Mohamed 

Imran & 

Kowsalya, 

2014) 

0.633 (17), 0.09 (18), 

0.9470 (33) 

-- 

   98.3 

0.964 

GA (Moradi & 

Abedini, 2012) 

1.50 (11), 0.4228 (29), 

1.0714 (30) 

-- 
     106.3 

0.981 

(25) 

PSO (Moradi 

& Abedini, 

2012) 

1.1768 (8), 0.9816 (13), 

0.8297 (32) 

-- 
       

105.35 

0.980 

(30) 

GA/PSO 

(Moradi & 

Abedini, 2012) 

0.9250 (11), 0.8630 (16), 

1.2 (32) 

-- 

     103.4 

0.980 

(25) 

Case 

3 
C2oDE -- 1.143 (30), 0.566 (24), 0.423 

(13) 
132.16 

0.938 

(18) 

BFOA (Mohamed 

Imran & 

Kowsalya, 2014) 

-- 0.349 (18), 0.821 (30), 0.277 

(33) 144.04 

0.936 
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PSO (Askarzadeh, 

2016)  

-- 0.9 (2), 0.45 (7), 0.45 (31), 0.3 

(15), 0.45 (29) 
132.48 

0.945 

Case 

4 
C2oDE 0.605 (14), 0.507 

(25), 0.873 (30) 

0.447 (11), 1.017 (30), 

0.414 (24) 
18.87 

0.981 

(18) 
WCA (El-Ela 

et al., 2018) 

0.973 (25), 1.04 (29), 

0.563 (11) 

0.465 (23), 0.565 (30), 

0.535 (14) 
24.688 

0.980 

(33) 

GA 

(Saonerkar & 

Bagde, 2014) 

0.25 (16), 0.25(22), 

0.50 (30) 

0.30 (15), 0.30 (18), 0.30 

(29), 0.60 (30) 

  71.25 0.971 

LSHADE (P. 

P. Biswas et 

al., 2018) 

0.665 (14), 0.446 

(25), 0.889 (30) 

0.950 (3), 0.341 (14),1.009 

(30) 19.37 

0.9863 

(8) 

BFOA 

(Mohamed 

Imran & 

Kowsalya, 

2014) 

0.542 (17), 0.160 

(18), 0.895 (33) 

0.163 (18), 0.338 (33), 

0.541 (30) 

41.41 

0.978 

 

TABLE V. IEEE 33-Bus Results of C2oDE for Case 5 and 6 

Case 

No. 

DGs (MW) SCB (MVAr) 
Open 

Switch

es 

Obje

ctive 

funct

ion 

Ploss 

(kW) 

VD 

(p.u) 

VSI 

(p.u

) 

min 

Volt

age 

(bus) 

Power 

Factor 

Size 

(location) 

Size 

(Location) 

Case 

5 (a) 
1 

0.696 (33), 

1.221 (25), 

1.226 (8) 

0.242 (33), 

0.991 (30), 

0.606 (08) 

11, 4, 

13, 15, 

23 

8.839 8.839 
0.000

404 

0.99

19 

(14) 

1.033

6 p.u 

Case 

5 (b) 
1 

0.796 (31), 

1.035 (25), 

1.057 (9) 

0.651 (25), 

0.796 (30), 

0.514 (9) 

33, 6, 

13, 17, 

25 

4.906

2 
9.286 

0.028

101 

0.99

40 

(17) 

1.023

97 

Case 

6 (a) 

0.9745

, 

0.9401

, 

0.9016 

0.8038 

(33), 1.002 

(8), 1.2661 

(25) 

0.145 (15), 

0.469 (30), 

0.157 (17) 

35, 20, 

12, 30, 

27 

7.685

9 
7.686 

0.000

302 

0.99

46 

(22) 

1.024

7 

Case 

6 (b) 

0.9022

, 

0.9396

, 

0.9273 

0.902 (8), 

0.939 (25) 

0.927 (32) 

0.001 (10), 

0.652 (30) 

0.1477 (23) 

35, 5, 

12, 15, 

25 

4.196

9 
7.827 

0.076

78 

0.98

76 

(13) 

1.055

8 
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Fig. 6. DG and SCB rating of all the cases of 33-bus 

 

Minimum p.u voltage 0.9813 is found at bus 18. The last column of Table 3 and Table 4 indicates 

minimum voltage experiences the bus in the system. Suggested capacity and allocation of DG and 

SCB, C2oDE gives better voltage deviation from the 1 p.u. As shown in Fig. 6, C2oDE gives the 

smallest active power loss as compared to other methods along with optimal DG and SCB 

injection. Further, Table 5 shows the simulation results of cases 5 and 6 in which controlled and 

uncontrolled PF of DG is considered. In Case 5 (a) (single objective) objective function 8.839 kW 

loss whereas 0.000404 p.u VD and 1.0336 p.u VSI appear by reconfiguration and cumulative 

3.1439 MW DGs and 1.8397 MVAR of SCBs injection. In Case 5 (b) (multi-objective) power loss, 

VD and VSI incurs 9.2864 kW, 0.028101p.u and 1.02397p.u respectively, whereas weighted sum 

multi objective function is approach is 4.9062 with 50, 25 and 25 priorities. Cumulative DG and 

SCB injection are 2.25 MW and 2.69 MVAR. 

However, in case 6, each DG’s PF is controlled and considered the decision vector in the 

optimization process. In Case 6 (a) (single objective), objective function power loss is reduced up 

to 7.6859 kW, approximately 95% reduction with the integration of a total of 3.0722 MW and 

0.7705 MVAr. However, in case 6 (b) (weighted sum multi objective), minimize the active power 

loss up to 7.82755 kW, slightly less than case 6 (a) with the injection of 2.7691 MW and 0.802 

MVAr. 
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Fig. 7. Convergence curve of case 1 to case 6 of 33-bus test system 

 

 

However, in case 6, each DG’s PF is controlled and considered the decision vector in the 

optimization process. In Case 6 (a) (single objective), objective function power loss is reduced up 

to 7.6859 kW, approximately 95% reduction with the integration of a total of 3.0722 MW and 

0.7705 MVAr. However, in case 6 (b) (weighted sum multi objective), minimize the active power 

loss up to 7.82755 kW, slightly less than case 6 (a) with the injection of 2.7691 MW and 0.802 

MVAr. It is concluded from the simulation results of cases 5 and 6, as shown in “Table 5”, that the 

optimal network reconfiguration with optimum DG allocation considering controllable PF and 

SCBs such as case 6 (a and b) is effective. Fig. 7 shows the convergence of the objective function 

for Case 1 to Case 6. Fig. 8 shows a comparison between the voltage level of all the study cases 

of 33-bus network. The voltage profile of case 6 (a) (PF of DG is controlled) close to 1 p.u 

compared to other cases. 
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Fig. 8. 33-bus voltage curve of all the case studies 

 

5.2 69-bus Radial Distribution System 

Tables 6 and 7 presents the simulation results of case 1 to case 4. In case 1 (only reconfiguration)

, the proposed algorithm achieves the lowest active power loss and the UVDA algorithm. Howev

er, a small variation in the performance of different algorithms is due to network data approximat

ion. In Case 1, switches between 55 to 58 can be on/off in the subsequent loops with no significa

nt changes. 

TABLE VI.  Simulation Results of 69-Bus System For Case 1 

Algorithm Tie Switches Ploss (kW) Vmin (bus) 

Base 69, 70, 71, 72, 73 225  

C2oDE 14, 58, 61, 69, 70 98.58 0.9495 (61) 

CSA (T. Nguyen 

& Truong, 2015) 
14, 57, 61, 69, 70  98.59 0.9495 (61) 

FWA (Mohamed 

Imran et al., 2014) 
14, 56, 61, 69, 70  98.59  0.9495 (61) 

ACSA (T. T. 

Nguyen et al., 

2016) 

14, 57, 61, 69, 70  98.59  0.9495 (61) 

UVDA (Bayat et 

al., 2016) 
14, 58, 61, 69, 70  98.58  0.9495 (61) 
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In Table 7, in comparison to other algorithms, C2oDE attains minimum power loss. In cases 2 and 

3, losses are 70.77 and 145.11 kW, respectively. Further, in both cases, a minimum voltage appears 

on 65th bus equal to 0.9749 and 0.9314 p.u. 

In both the cases (case 2 and case 3), obtained results are assessed and compared with that of HSA 

[19], GA [35], WCA [21], FWA [28], RGA [36], CVSI [37], PSO [13], DE [15] , DE-PS [16], 

TLBO [17], and DSA [18]. Simulation results are shown in Table 7, which clearly shows that 

C2oDE is efficient for finding the optimal capacity and site of SCB and DG allocation with the 

smallest losses. Moreover, case 4 suggests that the injection of three DGs and SCBs at three 

different buses significantly reduces more power loss than a single DG and SCB of the same rating. 

In Case 4, three DGs injection at three different buses 61, 22, and 69 with the injection of 1.6422, 

0.3582, and 0.2493 respectively and three SCBs at buses 61, 22, and 11 of the rating 1.1987, 0.2321 

and 0.3663 respectively. Smallest power loss 5.2669 kW is reached in comparison to LSHADE 

[32], WCA [21], MOEA/D [22] and IMDE [24]. Furthermore, Fig. 9 shows the comparison 

between the DG and SCB injection of various algorithms with respect to active power loss 

minimization and C2oDE gives the smallest active power loss as compared to other methods along 

with optimal DG and SCB injection. 

Fig. 9 shows that, compared to cases 2 and 3, simulation results of case 4 is more useful to reduce 

power loss and inject minimum cumulative rating of DG and SCB. Table 8 shows the simulation 

results of cases 5 and 6, in which the optimal integration of DG and SCB are computed. In Case 5 

(a) (single-objective), C2oDE attains 4.3364 kW power loss, about 98% reduction with 0.0382 VD 

and 1.0262 VSI, cumulative 2.9876 MW of DGs, and 1.7409 MVAR of SCBs injection. Case 5 

(b) weighted sum objective function is 2.4794 with priority factor of 50, 25, and 25 percent. 

 

TABLE VII.  Simulation Results of Case 2 To Case 4 

Case Algorithm DG size (bus) SCB size (bus #)  Ploss 

(kW) 

Vmin 

(bus) 

Case 2 C2oDE 0.2811 (12), 0.3128 

(21), 1.6560 (61) 

 70.77 0.9749 

(65) 

 HSA (Rao et al., 

2013)  

0.1018 (65), 0.3690 

(64), 1.3024 (63)  

 86.77 0.967 

 GA (Nara, 

Shiose, 

Kitagawa, & 

Ishihara, 1992) 

1.9471  88.5 0.969 

 RGA (Zhu, 

2002) 

1.7868  87.65 0.968 
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 CVSI (Gantayet 

& Mohanty, 

2015) 

1.895 (61)  83.18 0.968 

(27) 

 WCA (El-Ela et 

al., 2018) 

0.775 (61), 1.105 (62), 

0.4380 (23)  

 71.5 0.987 

(65) 

 FWA (Mohamed 

Imran et al., 

2014) 

0.2258 (27), 1.1986 

(61), 0.4085 (65) 

 77.85 0.974 

(62) 

Case 3 C2oDE  1.4112 (61), 0.4310 (11), 

0.2464 (21)  

145.11 0.9314 

(65) 

 PSO (Prakash & 

Sydulu, 2007)   

 1.015 (59), 0.241 (61), 

0.365 (65)  

156.14 0.934 

 DE (Neelima & 

Subramanyam, 

2011)   

 0.2 (16), 0.7 (60), 0.5 

(61)  

149.55 0.928 

 DE-PS (El-

fergany, 2013) 

 0.95 (61), 0.2 (64), 0.05 

(65), 0.15 (95), 0.3 (21)  

146.13 0.931 

 TLBO (Sultana 

& Roy, 2014)  

 0.6 (12), 1.050 (61), 

0.150 (64) 

146.35  

 DSA (Raju et al., 

2012)  

 0.9 (61), 0.45 (15), 0.45 

(60) 

147  

Case 4 C2oDE   1.6422 (61), 0.3582 

(22), 0.2493 (69) 

1.1987 (61), 0.2321 (22), 

0.3663 (11) 
5.2669 

0.9942 

(50) 

 LSHADE (P. P. 

Biswas et al., 

2018) 

0.310 (12), 0.313 (21), 

1.627 (61)  

0.582 (12), 0.881 (49), 

1.227 (61) 
5.81  

0.9943 

(65) 

 WCA (El-Ela et 

al., 2018) 

0.5408 (17), 2 (61), 

1.1592 (69)  

1.1879 (2), 1.2373 (62), 

0.2697 (69)  
33.339 

0.994 

(50) 

 MOEA/D 

(Partha P Biswas 

et al., 2017)  

0.520 (17), 1.731 (61)  0.353 (17), 1.239 (61) 7.20  
0.9943 

(69) 

 IMDE 

(Khodabakhshian 

et al., 2016)   

479 (24), 1738 (62)  1.192 (61), 0.109 (63) 13.83  0.9951 
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TABLE VIII.  Simulation Results of Case 5 and Case 6 

Cas

e 

No. 

DGs (MW) 
SCB 

(MVAr) Open 

Switche

s 

Objectiv

e 

function 

Ploss 

(kW) 

VD 

(p.u) 

VSI 

(p.u) 

min 

Voltag

e (bus) 
Power 

factor 

Size 

(location

) 

Size 

(location

) 

Cas

e 5 

(a) 

1 

0.7143 

(12), 

0.6323 

(49), 

1.6410 

(61) 

1.2173 

(61), 

0.2881 

(13), 

0.2355 

(69) 

10, 56, 

13, 17, 

73 
4.3365 

4.336

5 

0.038

2 

1.026

2 

0.9935 

(65) 

Cas

e 5 

(b) 

1 

0.3611 

(66), 

1.7956 

(61), 

0.3982 

(19) 

0.4642 

(50), 

1.2369 

(61), 

0.3902 

(22) 

9, 57, 

13, 16, 

73 
2.4794 

4.609

1 

0.025

6 

1.018

3 

0.9962 

(69) 

Cas

e 6 

(a) 

0.8706

, 

0.8597

, 

0.8844 

1.6821 

(61), 

0.6949 

(12), 

0.6582 

(50) 

0.2162 

(64), 

0.0765 

(22), 

0.0901 

(41) 

69, 54, 

14, 17, 

73 
2.9203 

2.920

3 

0.023

9 

1.014

9 

0.9962 

(17) 

Cas

e 6 

(b) 

0.8739

, 

0.8207 

0.9204 

0.6139 

(61), 

1.7331 

(61), 

0.8644 

(50) 

0.0678 

(68), 

0.0918 

(29), 

0.1947 

(67) 

8, 72, 

71, 16, 

64 
1.9362 

3.363

6 

0.005

7 

1.011

9 

0.9968 

(69) 

 

With these priorities, active power loss, VD and VSI are 4.6091 kW, 0.0256 p.u, and 1.0183 p.u, 

respectively. Optimal total DGs injection of 2.5549 MW and SCBs 2.0913 MVAR injection. 

However, in case 6, each DG’s PF is controlled and considered the decision vector in the 

optimization process. In Case 6 (a) (single-objective), power loss minimized up to 2.9203 kW 

approximately 98.5% reduction with 3.0352 MW of DGs and 0.3828 MVAr of SCBs injection. 

However, in case 6 (b) (weighted sum multi-objective) minimize the objective function up to 

1.9362 with priority factors of 50, 25 and 25 that gives 3.3636 kW, 0.0057p.u and 1.0119 p.u of 



P-ISSN 2710-1703 | E-ISSN 2789-8083  20 
 

 

Sukkur IBA Journal of Educational Sciences & Technologies - SJEST Vol 3, Issue 1; 2023 
 

power loss, VD and VSI respectively, with the injection of 3.2114 MW and 0.3543 MVAr. It is 

concluded from the simulation results of case 5 and 6, that the optimal network reconfiguration 

with DG allocation considering controllable PF and SCBs is useful to reduce power loss and VD 

with maximization of VSI. 

Furthermore, the convergence curve of all the study cases is shown in Fig. 10. From the 

convergence curve viewpoint, C2oDE converges in 100 iterations for cases 1 to case 4, while up 

to 150 iterations, it gives a global or near-global solution for case 5 and case 6. However, Fig. 11 

shows a comparison between the voltage level of all the study cases of a 69-bus network. In all the 

cases voltage levels are within desirable limit, and case 6 (b) is more effective than other cases 

 

 

Fig. 9. DG and SCB rating of all cases vs. past methods 
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Fig. 10. Convergence curve of case 1 to case 6 of 69-bus test system 

 

 

Fig. 11. Voltage profile of 69-bus test system of all cases 
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6. Conclusion 

In this paper, a constrained composite differential evolution algorithm is used to optimize network 

reconfiguration along with site and size of DG and SCB allocation. Six cases of single and 

weighted sum multi objective functions are formulated to optimized power loss, VD, and VSI. 

IEEE 33-bus and 69-bus test systems have been considered to show the proposed algorithm’s 

superiority and performance. Simulation results and comparison with the most recent methods 

show that the proposed method can find the optimal global solution to non-linear and mixed-

integer problems. It is clear from the simulation results that optimal reconfiguration and optimum 

site and capacity of DG and SCB are most efficient. The proposed algorithm has fully and 

efficiently utilized the installed capacity of DGs and SCBs. 

In comparison to all the cases, case 6 (b) effectively integrate the active and reactive power of DG 

and find the best compromise values of objective functions. Furthermore, the integration of 

controlled PF DG enables to increase the overall security of the system. Overall voltage profile 

and minimum voltage at the bus enhanced with the integration of reactive power of DG. In the 

future, the cost of DG and SCB and emission factors shall be considered for finding the 

effectiveness of the proposed algorithm. 
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