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Abstract: 
Since the last few decades, the need for machine learning-based compilation approaches has 

become indispensable for every aspect of growing technology, especially artificial intelligence 

and network computing areas. These approaches improve performance and result quality, while 

also addressing compiler optimization issues such as optimization selection and phase ordering. 

It has evolved from a relatively obscure research area into a mainstream movement. The study 

of current compiler optimization techniques leads to the discovery of the best heuristic 

parameters to tune each optimization tactic using machine learning. In this research paper, we 

have highlighted the terms machine learning and compiler, the relationship between compiler 

optimization and machine learning, and the identity of the concepts of models, training, and 

approaches. 
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I. INTRODUCTION 

The function of the compiler is to translate 

human-written programming scripts into a 

machine (binary) structure that is 

understandable by the computer hardware. 

Compilers perform two main tasks: translation 

and optimization. Initially, all the compilers 

must execute and convert the scripts into 

binary language. After translation, the second 

task is to search out the best and most efficient 

conversion that is possible. Most research and 

engineering practices aim to achieve the 

second performance goal. Machine learning, 

which is a branch of artificial intelligence 

(AI), works like this: it predicts the output 

from the data and then continues to optimize 

the solution by learning. In simpler terms, we 

could describe it as a process similar to 

interpolation. The area of optimization closely 

ties into this ability to predict using prior 
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information to find the information point with 

the simplest outcome. 

Machine Learning 

Machine learning (ML) and deep learning 

play the main role not only in our daily lives 

but also in the revolution of industries, 

organizations, and computer systems. The 

application of machine learning approaches in 

different fields of science has been a dream of 

many people for decades and has become a 

reality in the modern era [1]. Since 1950, 

researchers have been studying this subject, 

emphasizing the importance of correction and 

the need for caution. Machine learning is an 

area of artificial intelligence that aims to 

predict and detect patterns and learn from a 

vast collection of data. It's a dynamic field, 

looking at topics as diverse as galaxy 

classification and forecasting elections based 

on Twitter feeds. 
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Compiler and Optimization Techniques        
Since the 1800s, researchers have been 
studying machine learning-based 
optimization. Despite the long journey of this 
union ship, these two subjects have not filled 
the software gap independently. There are two 
reasons for this gap: one is boosting hardware 
performance year by year, and the other is that 
computer architecture advances quickly. Each 
generational era has new foibles that compiler 
writers tried to catch, but they were difficult to 
handle manually. The automatic property of 
machine learning has overcome this problem. 
We replaced compiler experts who developed 
heuristics to optimize the code with a machine 
learning approach, which makes the machine 
run faster. 

Essentially, the compiler functions as 

software that translates high-level languages 

into machine language. As we all know, 

computers or computing machines can only 

comprehend assembly language or machine 

language, while we typically communicate in 

our formal language, which is similar to high-

level languages. Typically, we encounter 

challenges in comprehending machine 

language or assembly language, while 

machines can only identify these languages. 

Therefore, a compiler is being introduced to 

handle these situations in which both humans 

and machines work in their own language, and 

the compiler is working as a translator 

between humans and machines. Simply put, 

humans write their code in high-level 

language, and the compiler converts it into 

assembly language. Optimization in the 

compiler is introduced because, when the 

compiler was being introduced, it took lots of 

time and mostly missed out on some errors 

during compilation. That's why our desired 

program didn't work properly, and we didn't 

get our desired results. Compiler optimization 

primarily aims to enhance the compiler's 

performance to the maximum extent possible. 

Grace Murray Hopper was the first person to 

make a compiler A-0 for UNIVAC in 1951-2. 

John Backus was the second person to lead a 

team that developed the FORTRAN compiler. 

The first programming language that uses a 

compiler is COBOL. The 1960s saw the 

development of a bootstrapping LISP 

compiler for the first time. In the 1960s and 

1970s, parsing and scanning studies provided 

a proper solution. Compiling programming 

languages is one of the most important 

components for converting one language into 

another [2]. 

The compiler optimizes an executable 

computer program by minimizing and 

maximizing its attributes [3]. The compiler's 

two main goals are to reduce the time it takes 

to execute a program and the amount of 

memory it occupies. The compilation of any 

program is composed of six phases, namely, 

lexical analysis, syntax analysis, semantic 

analysis, intermediate code generation, code 

optimization, and target code generation. 

However, with improvements in computer 

system architecture, the need for improving 

code size and instruction execution speed has 

also increased. The compiler's optimization 

phase determines a program's execution time 

and memory. 

The main goal of the compiler is to 

improve the target code, reduce processing 

time, and consume less space. In today's era, 

compilers come equipped with a variety of 

optimization techniques to enhance their 

efficiency. If the compiler applies all of the 

techniques at once, the program's execution 

and performance will suffer. To have a more 

significant impact, all they need is an accurate 

choice of optimization technique. Compilers 

are responsible for improving the target code 

without changing its output or adding any bad 

effects. The optimal sequence for every 

program is different depending on the source 

code and instructions. Therefore, in the 

contemporary era, individuals are adopting 

more refined and structured compiler analysis 

and optimization methods, such as advanced 

data flow analysis, leaf function optimization, 

and cross-linking optimizations, among 

others, to meet the latest trends and produce 

superior target code for hardware automation 

and the newest machines, respectively. 
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There are several techniques used for the 

optimization of compilers. 

Data-flow analysis 

It is a technique for gathering information 

concerning the calculated values of variables 

at different points in a computer program. The 

control-flow graph (CFG), a graphical view of 

a program, resolves the part of assigning 

values that might fluctuate [5]. 

Code Motion 

Loops play an important role in compiler 

optimization. We can enhance the running 

time of a program by decreasing the number 

of instructions in an inner loop, regardless of 

whether we make more increments in the 

quantity of code outside that loop, because 

programs are more likely to spend most of 

their time in inner loops. Code motion is a 

major moderation that lessens the amount of 

code in a loop. This moderation evaluates an 

expression that produces the same output 

independent of the loop's execution time [6]. 

Leaf Function Optimization 

Leaf functions do not execute code 

directly within a program. They would rather 

create these functions to achieve code 

reduction. There is no entry or exit code in the 

leaf function, which helps greatly in reducing 

the code size [7]. During the leaf optimization 

process, we place register constraints to 

control function calls, thereby reducing the 

code size. Another benefit of leaf function 

optimization is that it allows us to further 

optimize the code because the parent 

function's context includes the body of the 

inline function. 

Reverse-in-lining (procedural abstraction) 

Procedural abstraction is another name for 

reverse-in-line technology. It falls into the 

category of the newest techniques in compiler 

optimization, which focuses on reducing a 

program's code size [8]. The reverse-in-line 

technique achieves its goal by replacing 

function calls with code patterns that are 

present throughout the program. 

Cross-linking Optimization 

Search engine optimization generally uses 

cross-linking optimization [9]. However, 

nowadays, compiler optimization also uses 

this method. Functions containing switch 

statements with similar tail codes can use this 

method both locally and globally [10]. Since 

the major goal of cross-linking is code 

reduction, current computer architecture also 

focuses on it. A cross-linking optimization 

algorithm factors the tail codes detected in the 

switch statement to reduce the actual size of 

the code. 

Reduction in Strength 

Reduction in strength is the transformation 

of replacing an expensive operation (like 

multiplication) with a cheaper one (like 

addition). However, the induction variable not 

only enables us to perform the strength 

reduction, but it also frequently enables us to 

terminate all the groups of the induction 

variable, except for the one whose values 

remain in lockstep as we repeat the loop [11]. 

This optimization technique may lead the 

program to produce inaccurate results. It may 

replace the operators, which are important to 

produce effective and accurate results. 

Moreover, the debugger may find it more 

challenging to debug a program due to its 

limited capacity to handle a greater number of 

operators. 

Loop Unrolling 

In region-based scheduling, the boundary 

of loop iteration is one of the major barriers to 

code motion. We cannot overlap the operation 

from one iteration to another. One of the most 

simple and productive techniques for solving 

this problem is to unroll the loop multiple 

times before code scheduling. In this type of 

optimization, a compiler may become slower 

as unrolling the loop again and again after a 

short span of time may take it longer to 

compile, and loop-rolling optimization may 

become expensive to perform [12]. 

Multiple Memory Access Allocation 

One of the most recent optimization 
methods, Multiple Memory Access Allocation 
(MMAA), stores instructions in multiple 
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registers. Microprocessors use this process to 
reduce the code size [13]. 

Combined Code Motion and Register 

Allocation 

This optimization technique is a 

combination of code motion and register 

allocation. Code motion aims to retain 

infrequently used instructions within basic 

blocks. In these blocks or regions, instruction 

scheduling sets up instructions so that they can 

do parallel computations on their own [14]. 

The goal of Register Allocation and Code 

Motion (RACM) is to reduce the load on 

registers by applying the code motion 

technique, i.e., moving the code, then live-

range splitting, and finally spilling. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

II. MACHINE LEARNING BASED 

COMPILER  

It is the responsibility of programmers and 

compilers to understand the most effective 

heuristics and optimization techniques for 

coding, with the goal of enhancing 

performance, reducing power consumption, 

and minimizing errors. Compiler modeling 

can use machine learning features to make 

decisions for a specific program. This 

integrated paradigm depends on two stages: 

learning and deployment. The learning phase 

involves training the model with historical 

data, followed by its application to a 

previously unseen new program [15]. 
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The processes that machine learning uses to 

make a compiler more powerful are shown in 

Fig. 1, including feature engineering, learning 

a model, and deployment, which are described 

in the following sub-sections. 

Stage 1: Feature Engineering 

Being able to describe programs before 

learning them is helpful. AI relies on a variety 

of quantifiable properties or features; see Fig. 

1(a). Various highlights can be utilized, which 

incorporate the static information structures 

from the source code or the compiler's 

halfway portrayal, dynamic profiling data 

acquired through runtime profiling, or a blend 

of both. The cycle of highlight determination 

and tuning is referred to as highlight 

designing. This cycle may necessitate 

multiple iterations to identify a variety of 

high-quality highlights for a specific machine-

learning model. 

Stage2: Model Learning: 

The next step is to train a model using the 

training data. This process can be considered 

in Fig. 1(b). Unlike other applications of 

machine learning, we learn and generate the 

training data using existing data. Typically, 

the compiler developer will select training 

programs from the application area. The 

compiler developer extracts certain feature 

values from previous programs, considering 

optimization preferences and calculations. 

The developer uses these values to train an 

algorithm that builds a model automatically. 

This model predicts new future values and sets 

of features for optimal options. 

Stage3: Deployment 

Finally, as shown in Fig. 1 (c), the 

compiler embeds the learning model to predict 

the best choice for a new and innovative 

program. 

III.  OPTIMIZED COMPILATION 

APPROACHES (METHODOLOGY) 

The basic challenge of the compiler 

optimization process is choosing the correct 

code transformation. These resources 

effectively evaluate the quality and potential 

complexity of the selected option. A native 

approach is to perform transformational 

analysis and optimize performance for the 

program-side view metric. This search-based 

cycling optimal approach is known as iterative 

compilation [16–17] or auto-tuning. 

Researchers have developed numerous 

techniques to reduce the expense of searching 

through an enormous amount of space. 

Generally, the overhead is reasonable if the 

program in question is intended for frequent 

use, such as in a deeply implanted device. Its 

principal impediment remains. It only 

achieves a reasonable improvement for a 

single program and does not culminate in a 

compiler heuristic. 

We have two fundamental methodologies 

that allow us to tackle the issue of 

optimization scalability by selecting compiler 

alternatives that work across programs. The 

primary process aims to develop a cost 

capacity that can serve as an intermediary for 

evaluating the characteristics of a predicted 

option, eliminating the need for extensive 

profiling. The next step is to legitimately 

predict the best-performing choice. 

A. A Cost Function Implementation 

A large portion of compiler heuristics 

relies on cost work that estimates the nature of 

a compiler. Quality measurement can be 

execution time, code size, or energy 

utilization, depending on the improvement 

objective. Using a cost function, a compiler 

can assess the scope of potential alternatives 

and pick the best one without expecting to 

incorporate and profile the program with 

every choice. 

(a) The Problem of Handcrafted Heuristics 

Typically, creating a compiler cost 

function involves physical processes. For 

instance, a heuristic for capacity inlining 

incorporates several crucial measurements, 

including the number of directions for the in 

lined objective capacity, the size of the cell 

and stack after inlining, and a comparison of 

the results against a predetermined limit to 
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determine the feasibility of inlining a capacity 

[18]. 

(b) Cost Functions for Energy Consumption 

In addition, the cost function for energy 

consumption and performance is the main 

investigation of the cost function that finds 

different ways to learn the energy models for 

the architectural design of hardware and 

software optimization [19–20]. Most of the 

earlier work on power displaying relied on 

regression-based methodologies, as real 

values continue to measure energy reading 

power. 

B. Predict Unswervingly the Best Option 

Therefore, while function costing is very 

useful for evaluating a compiler's quality, the 

optimal search options are still exorbitant. As 

a result, researchers have investigated the 

many ways in which the compiler predicts the 

best decisions using machine learning to solve 

smaller compilation problems. Monsifrot et 

al. pioneered the use of a machine learning 

decision-based tree approach to predict the 

optimal compiler decision [21]. 

IV. MACHINE LEARNING MODELS 

Compiler optimization can utilize a wide 

range of machine learning algorithms [22]. 

The two major categories are as follows: 

supervised and unsupervised learning models. 

A. Supervised Learning Model: 

In this technique, the model learns from 

empirical data and the program's analytical 

properties (features), understands the 

correlation between these properties, and 

optimizes decisions to achieve optimal 

performance. The output determines which 

predictive model to use; if the output is 

continuous, then the predictive model is a 

regression model, or if it is discrete, then it is 

a classification model. 

Regression is a technique in which a 

machine learns from input data. Most 

compilation tasks use this technique, which 

includes predicting program execution input, 

speeding up program execution based on 

input, and reducing latency workloads [23–

24]. The most discussed regression models are 

simple linear and advanced support vector 

machines (SVMs) and artificial neural 

networks (ANNs) [25-26]. Another technique 

and classification extensively leverage past 

data from previous AI-based code 

optimization work. This method takes in a 

component vector and predicts which of a set 

of classes the feature vector is associated with. 

For example, by considering the input vector, 

which indicates the characteristics of the 

selected cycle, this technique can predict 

unknown features for iterative data. 

B. Unsupervised Learning Model: 

In unsupervised learning, there is no 

output labelled, just the input values that the 

learning algorithms take as feature values. 

Clustering is a technique that involves 

grouping input data items into subsets. 

Typically, we use this model to form the 

fundamental framework for data division. 

Many techniques fall under the category of K-

cluster unsupervised algorithms. The most 

popular algorithms are KNN (k-nearest 

neighbours), hierarchal clustering, anomaly 

detection, neural networks, principal 

component analysis, independent component 

analysis, and the Apriori algorithm. K-means, 

the clustering algorithm combines the data 

input into three clusters on a two-dimensional 

feature space [27]. The statistical method of 

principal component analysis (PCA) primarily 

reduces feature dimensions. Meanwhile, 

researchers propose an auto-encoder, a newly 

proposed artificial neural network-based 

architecture, to discover efficient coding [28]. 

V. CASE STUDIES AND EVALUATION 

Machine learning (ML) is being 

increasingly applied to compiler optimization, 

which is a field of research that is 

experiencing tremendous growth. This part 

provides an overview of the most significant 

works, emphasizing their contributions and 

the areas that our study intends to fill. 
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Monsifrot et al. were pioneers in 

investigating the application of machine 

learning (ML) in the field of compiler 

optimization [29]. A supervised learning 

strategy was implemented, utilizing a decision 

tree model to train and predict unroll factors 

for loops. The predictions were based on static 

code properties. This ground breaking 

research showcased the capacity of machine 

learning to surpass conventional heuristics in 

targeted optimization problems [29]. 

Agakov et al. further developed this idea 

by employing Bayesian networks to predict 

the profitability of inlining functions [30]. 

Their approach utilized a combination of static 

and dynamic program characteristics to 

generate predictions, illustrating that 

including various types of variables might 

lead to enhanced optimization decisions [30]. 

In a separate study conducted by Cavazos 

and O'Boyle, it was proposed to utilize 

reinforcement learning to adaptively modify 

the optimization settings of a Just-In-Time 

(JIT) compiler [31]. By employing this 

method, the compiler gained information and 

adapted its optimization strategy by studying 

the performance feedback of the code it 

produced. Consequently, it consistently 

enhanced the efficiency of the program's 

execution time over a specific duration [31]. 

In 2008, Fursin et al. introduced the 

concept of Collective Optimization, which 

utilizes collaborative machine learning 

techniques to improve code optimization. This 

framework enables the sharing and reuse of 

optimization knowledge across different 

programs and compilation settings, leading to 

the development of more robust and widely 

applicable optimization strategies [32]. 

In 2018, Ashouri et al. did a thorough 

investigation of machine learning methods 

used to optimize compilers. The approaches 

were categorized into supervised learning, 

unsupervised learning, and reinforcement 

learning, with a thorough analysis of the 

benefits and drawbacks of each category. 

Their investigation highlighted the growing 

trend of utilizing deep learning models for 

advanced optimization tasks, which allows for 

the identification of intricate patterns within 

large datasets [33]. 

In 2018, Wang and O'Boyle presented a 

sophisticated deep learning system 

specifically developed to automate the process 

of compiler optimization. Their methodology 

utilized a deep neural network to establish a 

direct relationship between program attributes 

and optimization choices, so eliminating the 

need for manually crafted heuristics. This 

approach exhibited significant improvements 

in performance, while also providing insights 

into the challenges related to the 

interpretability and training of deep learning 

models in this specific context [34]. 

Despite these advancements, there are still 

several challenges in the implementation of 

machine learning for compiler optimization. 

Several ongoing studies focus on specific 

optimization challenges and aim to tackle the 

comprehensive optimization of compilers. 

VI. PERFORMANCE METRICS 

The performance measures commonly 

encompassed in this context are the reduction 

of execution time, energy efficiency, and the 

capacity to generalize to programs that have 

not been previously encountered. 

Minimization of Execution Time 

Machine learning models regularly 

demonstrated substantial decreases in 

execution time. Wang and O'Boyle [34] found 

that deep learning models led to an average 

decrease of 12%. Similarly, Monsifrot et al. 

[29] and Agakov et al. [30] achieved 

reductions of 10% and 8% respectively. 

Optimizing the use of energy 

Research conducted by Cavazos and 

O'Boyle [31] and Fursin et al. [32] have 

emphasized enhancements in energy 

efficiency. Cavazos and O’Boyle [31] 

showcased a 15% enhancement in energy 

efficiency by employing reinforcement 

learning, whereas Fursin et al. [32] 
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documented a maximum improvement of 20% 

using collective optimization approaches. 

Extension to Unfamiliar Programs 

The capacity of machine learning models 

to extrapolate to unfamiliar programs was 

assessed by testing models on distinct test sets. 

In their study, Wang and O'Boyle [34] 

demonstrated that their deep learning model 

achieved consistently excellent accuracy, with 

a little decrease of approximately 3% in 

performance when applied to new 

applications. 

Multiple research studies have also 

performed ablation experiments to determine 

the influence of various features and 

components on the performance of the model: 

Importance of Features 

The presence of dynamic execution 

elements was determined to be crucial for 

making precise predictions. In their study, 

Wang and O'Boyle [34] found a notable 

decline in performance when the dynamic 

characteristics were eliminated, highlighting 

the crucial role they play in the machine 

learning model. 

Complexity of the model 

There was a correlation between the 

complexity of the ML models and the gains in 

performance. Less intricate models such as 

decision trees demonstrated moderate 

enhancements [29], whereas more intricate 

models like DNNs [34] achieved superior 

performance gains but necessitated greater 

processing resources. 

The evaluated research conducted a 

comparison between machine learning-based 

optimizations and the latest heuristic 

approaches employed in widely-used 

compilers like GNU compiler Collection 

(GCC) and Low-level Virtual Machine 

(LLVM). The findings consistently 

demonstrated that machine learning-based 

approaches surpassed conventional methods: 

• The decision tree approach outperformed 

GCC's default heuristics by achieving a 

10% reduction in execution time [29]. 

• Bayesian networks resulted in an 8% 

decrease in execution time compared to 

GCC's default inlining techniques [30]. 

• Reinforcement learning demonstrated a 

15% improvement in performance when 

compared to static JIT optimization 

approaches [31]. 

• Collective optimization techniques 

surpassed traditional methods, resulting 

in a notable 20% decrease in execution 

time [32]. 

• On average, deep learning models 

decreased execution time by 12% 

compared to LLVM's heuristics [34]. 

VII.  CHALLENGES AND FUTURE 

DIRECTIONS 

Although machine learning-based 

compiler optimization holds promise, there 

are still some difficulties that need to be 

addressed. The technological challenge of 

integrating ML models with current compiler 

infrastructures might be considerable. The 

computational complexity and resource 

demands of training and deploying machine 

learning models are substantial. Furthermore, 

guaranteeing the precision and dependability 

of machine learning-based optimizations, 

particularly in safety-critical applications, is a 

significant worry. Addressing the difficulty of 

generalizing machine learning models to 

function across many compilers and 

programming languages is another task that 

must be tackled. 

The prospects for machine learning-based 

compiler optimization are promising, with 

numerous developing trends and potential 

breakthroughs on the horizon. Hybrid 

methodologies that integrate machine learning 

with conventional techniques are becoming 

increasingly popular. Improvements in 

hardware, such as dedicated accelerators 

designed for machine learning activities, have 

the potential to significantly improve the 

performance of machine learning-based 
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improvements. Additional investigation is 

required to tackle the obstacles and 

constraints, specifically with the ability to 

apply findings to a wider context and the 

dependability of the results. 

VIII. CONCLUSION 

This article provides an overview of the 

contemporary techniques employed by 

compilers for optimizing code. Numerous 

strategies and procedures have been suggested 

to enhance the efficiency and utility of 

compilers. However, the effectiveness of 

these strategies is contingent upon the specific 

nature of the program. The primary objective 

of the compiler is to minimize the size of the 

code and generate optimized code. 

Researchers have suggested multiple 

strategies to optimize compilers, but, they still 

need to address certain deficiencies in their 

recommendations in order to improve their 

effectiveness. Using a compiler also has 

significant disadvantages that need to be 

addressed. Compilers must possess the 

capability to produce optimized code, 

minimize code size, utilize memory 

efficiently, and enhance a program's execution 

speed. 
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